Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1387-1393    DOI: 10.3724/SP.J.1037.2012.00365
Current Issue | Archive | Adv Search |
EFFECTS OF MELT MIXING WITH HIGH AND LOW TEMPERATURE MELTS ON SOLIDIFACATION MICROSTRUCTURES OF Au-20Sn EUTECTIC ALLOY
GUO Deyan, SONG Jiajia, CAI Liang, MAO Yong
Department of Materials Science and Engineering, School of Physical Science and Technology, Yunnan University, Kunming 650091
Cite this article: 

GUO Deyan SONG Jiajia CAI Liang MAO Yong. EFFECTS OF MELT MIXING WITH HIGH AND LOW TEMPERATURE MELTS ON SOLIDIFACATION MICROSTRUCTURES OF Au-20Sn EUTECTIC ALLOY. Acta Metall Sin, 2012, 48(11): 1387-1393.

Download:  PDF(878KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of melt mixing with high-temperature and low-temperature melts on Au-20Sn (mass fraction, %) eutectic alloy solidification microstructures have been studied. The solidification microstructure evolutions of Au-20Sn eutectic alloy by the temperatures of high-temperature melt were investigated. Melt mixing with high-temperature and low-temperature melts can effectively improve the solidification microstructure of Au-20Sn alloy. Adopting an appropriate melt mixing condition, which is high-temperature melt with 350 ℃ and low-temperature melt with 283 ℃, the precipitation of primary phase ζ'-Au5Sn will be inhibited during solidification process, and the full lamellar eutectic microstructure was obtained. When the temperature of high-temperature melt is high (360 ℃) or low (340 ℃), the primary phase ζ'-Au$_{5}$Sn will also exist in the solidification microstructure. Melt mixing with high-temperature and low-temperature melts can effectively decrease the Au atom segregation and modify the precipitation behavior of primary phase ζ'-Au5Sn. The compressive behavior at 220 ℃ exhibits a low yielding stress and a low stress platform for the alloy with full lamellar eutectic microstructure prepared by melt mixing, which indicates that the hot--workability of Au-20Sn alloy can be improved by melt mixing.

Key words:  melt mixing      Au-20Sn eutectic      alloy      solidification microstructure      primary phase     
Received:  20 June 2012     
ZTFLH:  TG146.3+  
Fund: 

Supported by National Natural Science Foundation of China (Nos.50964014 and 51161024)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00365     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1387

[1] Ohmi T, Tanaka Y, Kudoh M, Itoh Y. J Jpn Inst Met, 1992; 56: 1064

[2] Ohmi T, Matsuura K, Kudoh M, Itoh Y. J Jpn Inst Light Met, 1998; 48: 42

[3] Ohmi T, Iguchi M. Mater Sci Forum, 2010; 631: 367

[4] Jian Z Y, Yang G C, Zhou Y H. Trans Nonferrous Met Soc China, 1995; 5: 133

(坚增运, 杨根仓, 周尧和. 中国有色金属学报, 1995; 5: 133)

[5] He S X, Sun B D, Wang J, Zhou Y H. Trans Nonferrous Met Soc China, 2001; 11: 834

(何树先, 孙宝德, 王俊, 周尧和. 中国有色金属学报, 2001; 11: 834)

[6] Wang J, He S X, Sun B D, Li K, Shu D, Zhou Y H. Mater Sci Eng, 2002; A338: 101

[7] Wang J, He S X, Sun B D, Guo Q X, Nishio M. J Mater Process Technol, 2003; 141: 29

[8] Wang Y S,Wang L D, Zhu D Y, QingW, Wen H Y, Liao L. Mater Mech Eng, 2011; 35(2): 12

[9] Oppermann H. In: Zschech E, Whelan C, Mikolajick T eds., Materials for Information Technology. London: Springer–Verlag Press, 2005: 377

[10] Ciulik J, Notis M R. J Alloys Compd, 1993; 191: 71

[11] Liu Z G, Chen D Q, Luo X M. Precious Met, 2005; 26: 62

(刘泽光, 陈登权, 罗锡明. 贵金属, 2005; 26: 62)

[12] Tsai J Y, Chang C W, Shieh Y C, Hu Y C, Kao C R. J Electron Mater, 2005; 34: 182

[13] Zhang G S, Jing H Y, Xu L Y, Wei J, Han Y D. J Alloys Compd, 2009; 476: 138

[14] Chidambaram V, Hattel J, Hald J. J Alloys Compd, 2010; 49: 170

[15] Chidambaram V, Hald J, Hattel J. J Alloys Compd, 2009; 49: 323

[16] Tan Q B, Deng C, Mao Y, He G. Gold Bull, 2011; 44: 27

[17] Novakovic R, Ricci E, Gnecco F, Giuranno D, Borzone G. Surf Sci, 2005; 599: 230

[18] Balagurusamy V S K, Streitel R, Shpyrko O G, Pershan P S, Meron M, Lin B H. Phys Rev, 2007; 15(10)B: 61

[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[7] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[8] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[9] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[10] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[11] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[12] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[13] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[14] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[15] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
No Suggested Reading articles found!