Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1387-1393    DOI: 10.3724/SP.J.1037.2012.00365
Current Issue | Archive | Adv Search |
EFFECTS OF MELT MIXING WITH HIGH AND LOW TEMPERATURE MELTS ON SOLIDIFACATION MICROSTRUCTURES OF Au-20Sn EUTECTIC ALLOY
GUO Deyan, SONG Jiajia, CAI Liang, MAO Yong
Department of Materials Science and Engineering, School of Physical Science and Technology, Yunnan University, Kunming 650091
Download:  PDF(878KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of melt mixing with high-temperature and low-temperature melts on Au-20Sn (mass fraction, %) eutectic alloy solidification microstructures have been studied. The solidification microstructure evolutions of Au-20Sn eutectic alloy by the temperatures of high-temperature melt were investigated. Melt mixing with high-temperature and low-temperature melts can effectively improve the solidification microstructure of Au-20Sn alloy. Adopting an appropriate melt mixing condition, which is high-temperature melt with 350 ℃ and low-temperature melt with 283 ℃, the precipitation of primary phase ζ'-Au5Sn will be inhibited during solidification process, and the full lamellar eutectic microstructure was obtained. When the temperature of high-temperature melt is high (360 ℃) or low (340 ℃), the primary phase ζ'-Au$_{5}$Sn will also exist in the solidification microstructure. Melt mixing with high-temperature and low-temperature melts can effectively decrease the Au atom segregation and modify the precipitation behavior of primary phase ζ'-Au5Sn. The compressive behavior at 220 ℃ exhibits a low yielding stress and a low stress platform for the alloy with full lamellar eutectic microstructure prepared by melt mixing, which indicates that the hot--workability of Au-20Sn alloy can be improved by melt mixing.

Key words:  melt mixing      Au-20Sn eutectic      alloy      solidification microstructure      primary phase     
Received:  20 June 2012     
ZTFLH:  TG146.3+  
Fund: 

Supported by National Natural Science Foundation of China (Nos.50964014 and 51161024)

Cite this article: 

GUO Deyan SONG Jiajia CAI Liang MAO Yong. EFFECTS OF MELT MIXING WITH HIGH AND LOW TEMPERATURE MELTS ON SOLIDIFACATION MICROSTRUCTURES OF Au-20Sn EUTECTIC ALLOY. Acta Metall Sin, 2012, 48(11): 1387-1393.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00365     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1387

[1] Ohmi T, Tanaka Y, Kudoh M, Itoh Y. J Jpn Inst Met, 1992; 56: 1064

[2] Ohmi T, Matsuura K, Kudoh M, Itoh Y. J Jpn Inst Light Met, 1998; 48: 42

[3] Ohmi T, Iguchi M. Mater Sci Forum, 2010; 631: 367

[4] Jian Z Y, Yang G C, Zhou Y H. Trans Nonferrous Met Soc China, 1995; 5: 133

(坚增运, 杨根仓, 周尧和. 中国有色金属学报, 1995; 5: 133)

[5] He S X, Sun B D, Wang J, Zhou Y H. Trans Nonferrous Met Soc China, 2001; 11: 834

(何树先, 孙宝德, 王俊, 周尧和. 中国有色金属学报, 2001; 11: 834)

[6] Wang J, He S X, Sun B D, Li K, Shu D, Zhou Y H. Mater Sci Eng, 2002; A338: 101

[7] Wang J, He S X, Sun B D, Guo Q X, Nishio M. J Mater Process Technol, 2003; 141: 29

[8] Wang Y S,Wang L D, Zhu D Y, QingW, Wen H Y, Liao L. Mater Mech Eng, 2011; 35(2): 12

[9] Oppermann H. In: Zschech E, Whelan C, Mikolajick T eds., Materials for Information Technology. London: Springer–Verlag Press, 2005: 377

[10] Ciulik J, Notis M R. J Alloys Compd, 1993; 191: 71

[11] Liu Z G, Chen D Q, Luo X M. Precious Met, 2005; 26: 62

(刘泽光, 陈登权, 罗锡明. 贵金属, 2005; 26: 62)

[12] Tsai J Y, Chang C W, Shieh Y C, Hu Y C, Kao C R. J Electron Mater, 2005; 34: 182

[13] Zhang G S, Jing H Y, Xu L Y, Wei J, Han Y D. J Alloys Compd, 2009; 476: 138

[14] Chidambaram V, Hattel J, Hald J. J Alloys Compd, 2010; 49: 170

[15] Chidambaram V, Hald J, Hattel J. J Alloys Compd, 2009; 49: 323

[16] Tan Q B, Deng C, Mao Y, He G. Gold Bull, 2011; 44: 27

[17] Novakovic R, Ricci E, Gnecco F, Giuranno D, Borzone G. Surf Sci, 2005; 599: 230

[18] Balagurusamy V S K, Streitel R, Shpyrko O G, Pershan P S, Meron M, Lin B H. Phys Rev, 2007; 15(10)B: 61

[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[4] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[5] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[6] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[7] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[8] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[9] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[10] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[11] SUN Xinjun,LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel[J]. 金属学报, 2020, 56(4): 661-672.
[12] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[13] SUN Heng,LIN Xiaoping,ZHOU Bing,ZHAO Shengshi,TANG Qin,DONG Yun. Microstructures and Tensile Deformation Behavior of Directionally Solidified Mg-xGd-0.5Y Alloys[J]. 金属学报, 2020, 56(3): 340-350.
[14] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[15] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
No Suggested Reading articles found!