Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1394-1402    DOI: 10.3724/SP.J.1037.2012.00404
Current Issue | Archive | Adv Search |
EFFECTS OF ACTIVATORS ON FORMATION OF Si-Zr-Y CO-DEPOSITION COATINGS ON Nb-Ti-Si-Cr BASE ULTRAHIGH TEMPERATURE ALLOY
LI Xuan, GUO Xiping
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

LI Xuan GUO Xiping. EFFECTS OF ACTIVATORS ON FORMATION OF Si-Zr-Y CO-DEPOSITION COATINGS ON Nb-Ti-Si-Cr BASE ULTRAHIGH TEMPERATURE ALLOY. Acta Metall Sin, 2012, 48(11): 1394-1402.

Download:  PDF(1147KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Si-Zr-Y co-deposition coatings on an Nb-Ti-Si-Cr base ultrahigh temperature alloy were prepared by pack cementation processes at 1250 ℃ for 8 h with different halide activators in the packs. The structure, constituent phases and formation process of the coatings were investigated. The results show that all the coatings are mainly composed of an (Nb, X)Si2 (X represents Ti, Cr and Hf elements) outer layer, a (Ti, Nb)5Si4 transitional layer, and an Al, Cr and Y-rich (Nb, X)5Si3 inner layer located between the coating and the substrate. In the five kinds of (NaF, NH4F, NH4Cl, NaBr and NaCl) activators investigated, the coatings prepared respectively with NaF and NH4F activators are thicker and denser, and furthermore, the contents of both Zr and Y elements are larger in the coating prepared with NaF as the activator. However, the coatings prepared respectively with NH4Cl, NaBr and NaCl as the activators are thiner, and lots of holes and ZrO2 and HfO2 particles are observed in the surface layer of the coatings. The higher equilibrium partial pressures of gaseous halide silicides in the packs resulted in thicker and denser co-deposition coatings, while the equilibrium partial pressures of  gaseous halide Zr and Y in the packs have less effect on their contents in the coatings.

Key words:  Nb-Ti-Si-Cr base ultrahigh temperature alloy      Si-Zr-Y co-deposition coating      structural formation      equilibrium partial pressure     
Received:  09 July 2012     
ZTFLH:  TG174.44  
Fund: 

Supported by National Natural Science Foundation of China (No.50871087) and the Programme of Introducing Talents of Discipline to Universities (No.B080401)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00404     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1394

[1] Bewlay B P, Jackson M R, Zhao J C, Subramaniam P R. Metall Mater Trans, 2003; 34A: 2043

[2] Guo X P, Gao LM, Guan P, Kusabiraki K, Fu H Z. Mater Sci Forum, 2007; 539–543: 3690

[3] Li M, Song L X, Le J, Zhang X W, Pei B G, Hu X F. Key Eng Mater, 2005; 280–283: 907

[4] Tian X D, Guo X P. Acta Metall Sin, 2008; 44: 585

(田晓东, 郭喜平. 金属学报, 2008; 44: 585)

[5] Qiao Y Q, Guo X P. Appl Surf Sci, 2010; 256: 7462

[6] Vilasi M, Steinmetz J, Allemand B G. J Adv Mater, 2000; 32: 53

[7] Vilasi M, Francois M, Podor R, Steinmetz J. J Alloys Compd, 1998; 264: 244

[8] Chen C, Zhou C G, Gong S K, Li S S, Zhang Y, Xu H B. Intermetallics, 2007; 15: 805

[9] Tian X D, Guo X P. Surf Coat Technol, 2009; 203: 1161

[10] Zhang P, Guo X P. Surf Coat Technol, 2011; 206: 446

[11] Christensen R J, Tolpygo V K, Clarke D R. Acta Mater, 1997; 45: 1761

[12] Hong S J, Hwang G H, Han W K, Lee K S, Kang S G. Intermetallics, 2010; 18: 864

[13] Pint B A. Oxid Met, 1996; 45: 1

[14] Reddy K P R, Smialek J L, Cooper A R. Oxid Met, 1982; 17: 429

[15] Zhai J K, Ma X, Bai X D, Hou W H. Acta Aeronaut Astronaut Sin, 1994; 15: 499

(翟金坤, 马祥, 白新德, 侯卫红. 航空学报, 1994; 15: 499)

[16] Wang Y, Gao J P, Li Y P, Hu X F. J Inorg Mater, 2000: 15: 143

(王禹, 郜嘉平, 李云鹏, 胡行方. 无机材料学报, 2000; 15: 143)

[17] Chaliampalias D, Stergioudis G, Skolianos S, Vourlias G. Mater Lett, 2008; 62: 4091

[18] Xiang Z D, Datta P K. Acta Mater, 2006; 54: 4453

[19] Sanjib M, Indrakumar S, Indradev S, Parag B. J Electrochem Soc, 2008; 155D: 743

[20] Brian V C, Robert A R. Metall Mater Trans, 1995; 26A: 777

[21] Tian X D, Guo X P. Surf Coat Technol, 2009; 204: 313

[22] Zhang P, Guo X P. Acta Metall Sin, 2010; 46: 821

(张平, 郭喜平. 金属学报, 2010; 46: 821)

[23] Qi T, Guo X P. J Inorg Mater, 2009: 24: 1220

(齐 涛, 郭喜平. 无机材料学报, 2009; 24: 1220)

[24] Wang R C, Jin Z P, Liu C L. J Cent South Univ Technol, 2002; 33: 385

(王日初, 金展鹏, 柳春雷. 中南工业大学学报, 2002; 33: 385)

[25] Zhao J C, Jackson M R, Peluso L A. Mater Sci Eng, 2004; 372: 21

[26] Shao G. Intermetallics, 2004; 12: 655

[27] Yu F H, Yang G H, Han R D, Weng H M. Acta Metall Sin, 1992; 28: 145

(俞方华, 杨国华, 韩荣典, 翁惠民. 金属学报, 1992; 28: 145)

[28] Schlesinger M E, Okamoto H, Gokhale A B. J Phase Equilib, 1993; 14: 502

[29] Pan J S, Tong J M, Tian M B. Fundamentals of Materials Science. Beijing: Tsinghua University Press, 1998: 466

(潘金生, 仝建民, 田民波. 材料科学基础. 北京: 清华大学出版社, 1998: 466)

[1] Xuan LI, Xiping GUO, Yanqiang QIAO. MICROSTRUCTURE AND OXIDATION BEHAVIOR OF ZrSi2-NbSi2 MULTILAYER COATINGS ON AN Nb-Ti-Si-Cr BASE ULTRAHIGH TEMPERATURE ALLOY[J]. 金属学报, 2015, 51(6): 693-700.
No Suggested Reading articles found!