Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1381-1386    DOI: 10.3724/SP.J.1037.2012.00422
Current Issue | Archive | Adv Search |
STUDY OF THE SOLIDIFICATION OF Ni-Ag MONOTECTIC ALLOY
ZHAO Lei, ZHAO Jiuzhou
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHAO Lei ZHAO Jiuzhou. STUDY OF THE SOLIDIFICATION OF Ni-Ag MONOTECTIC ALLOY. Acta Metall Sin, 2012, 48(11): 1381-1386.

Download:  PDF(716KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Ni-Ag alloy has good mechanical properties, high corrosion resistance and electrical conductivity. It is an excellent candidate to be used in many high-tech fields of aerospace, energy resource and chemical engineering etc. This alloy, however, is a typical monotectic system. Generally, the liquid--liquid phase transformation leads to the formation of a solidification microstructure with serious phase segregation. The manufacturing of this alloy is thus extremely difficult. Injection casting has already been carried out with the Ni-Ag monotectic alloy. The sample with composite microstructure, in which Ag-rich particles dispersed homogeneously in Ni matrix has been obtained. A model describing the microstructure evolution during injection casting of the Ni-Ag monotectic alloy has been proposed. The process of microstructure formation has been simulated and discussed in details. The results indicate that the Ostwald coarsening of Ag-rich droplets is very weak during cooling in miscibility gap under injection casting cooling conditions. The dispersivity of the primary Ag--rich phase is controlled by the nucleation of Ag-rich droplets during the liquid-liquid transformation. The number density ($N$) and average radius (<R>) of primary Ag--rich particles depend exponentially on the cooling rate of the alloy during the nucleation of Ag-rich droplets ($\dot{T}_{\rm Nuc}$) according to $N\propto\dot{T}_{\rm Nuc}^{1.8}$ and $\langle R\rangle\propto\dot{T}_{\rm Nuc}^{-0.6}$.

Key words:  Ni-Ag monotectic alloy      liquid-liquid transformation      rapid solidification      injection casting      simulation     
Received:  12 July 2012     
ZTFLH:  TG111.4  
  TF83  
Fund: 

Supported by National Natural Science Foundation of China (Nos.u0837601, 51071159 and 51031003)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00422     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1381

[1] Tsuji K, Inada H, Kojima K, Satoh M, Higashi K, Miyanami K, Tanimura S. J Mater Sci, 1992; 27: 1179

[2] Michal R, Saeger K E. IEEE Trans Comp Hybrids Manuf Technol, 1989; 12: 1

[3] Zhang Z Y, Nenoff T M, Huang J Y, Berry D T, Provencio P P. J Phys Chem, 2009; 113C: 1155

[4] Xie M, Zheng F Q,Wei J, Liu J L, Hu J S, Gu J Z, Li X. Precious Met, 1997; 18: 1

(谢 明, 郑福前, 魏 军, 刘建良, 胡建松, 顾江镇, 李 雄. 贵金属, 1997; 18: 1)

[5] Liu Z J, Cao J, Qu X H, Huang B Y, Li Z Y, Chen S Q, Lei C M. Chin Pat, 00103911.3, 2000

(刘志坚, 曹健, 曲选辉, 黄伯云, 李志友, 陈仕奇, 雷长明. 中国专利, 00103911.3, 2000)

[6] Dawson A W, Malik K L. US Pat, 5497133, 1996

[7] Cui H B, Guo J J, Su Y Q, Wu S P, Li X Z, Fu H Z. Acta Metall Sin, 2007; 43: 907

(崔红保, 郭景杰, 苏彦庆, 吴士平, 李新中, 傅恒志. 金属学报, 2007; 43: 907)

[8] Shi R P, Wang Y, Wang C P, Liu X J. Appl Phys Lett, 2011; 98: 204106

[9] Wang W L, Li Z Q, Wei B. Acta Mater, 2011; 59: 5482

[10] Zhou F M, Sun D K, Zhu M F. Acta Phys Sin, 2010; 59: 3394

(周丰茂, 孙东科, 朱鸣芳. 物理学报, 2010; 59: 3394)

[11] Zuo X W, Wang E G, Han H, Zhang L, He J C. Acta Metall Sin, 2008; 44: 1219

(左小伟, 王恩刚, 韩 欢, 张 林, 赫冀成. 金属学报, 2008; 44: 1219)

[12] Zhao J Z, Gao L L, He J, Wang J T, Chen G Y. Acta Metall Sin, 2006; 42: 113

(赵九洲, 高玲玲, 何 杰, 王江涛, 陈桂云. 金属学报, 2006; 42: 113)

[13] Qin G Y, Wang J H, Zhao H Z, Ning Y T, Xu S Y, Guo J X. Chin J Nonferrous Met, 2009; 19: 286

(秦国义, 王剑华, 赵怀志, 宁远涛, 许思勇, 郭锦新. 中国有色金属学报, 2009; 19: 286)

[14] Kuntyi O I, Olenych R R. Russ J Appl Chem, 2005; 78: 556

[15] Zhao J Z, Li H L, Xing C Y, Zhang X F, Wang Q L, He J. Comput Mater Sci, 2010; 49: 121

[16] He J, Zhao J Z, Ratke L. Acta Mater, 2006; 54: 1749

[17] Hu Z Q, Zhang H F. Acta Metall Sin, 2010; 46: 1391

(胡壮麒, 张海峰. 金属学报, 2010; 46: 1391)

[18] Zhao J Z, Guo J J, Jia J, Li Q C. Trans Nonferrous Met Soc China, 1995; 5: 85

[19] Zhao J Z, Gao L L, He J. Appl Phys Lett, 2005; 87: 131905

[20] Zhao J Z, Ratke L, Feuerbacher B. Modell Simul Mater Sci Eng, 1998; 6: 23

[21] Granasy L, Ratke L. Scr Metall Mater, 1993; 28: 1329

[22] Liu X J, Gao F, Wang C P, Ishida K. J Electron Mater, 2008; 37: 210

[23] Dinsdale A T. Calphad, 1991; 15: 317

[24] Kaptay G. Mater Sci Forum, 2006; 508: 269

[25] Kaban I G, Hoyer W. Phys Rev, 2008; 77B: 125426

[26] Brandes E A, Brook G B. Smithells Metals Reference Book. 7th Ed, Oxford: Butterworth–Heinemann Ltd., 1992: 14–7

[27] Pommrich A I, Meyer A, Holland–Moritz D, Unruh T. Appl Phys Lett, 2008; 92: 241922

[28] Roy A K, Chhabra R P. Metall Mater Trans, 1988; 19A: 273

[29] Su X P, Yang S, Wang J H, Tang N–Y, Yin F C, Li Z, Zhao M X. J Phase Equilib Diffus, 2010; 31: 333

[30] Louzguine–Luzgin D V, Setyawan A D, Kato H, Inoue A. Appl Phys Lett, 2006; 88: 251902

[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[5] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[8] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[9] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[10] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[11] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[12] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[13] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[14] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[15] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
No Suggested Reading articles found!