Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1306-1314    DOI: 10.3724/SP.J.1037.2012.00347
Current Issue | Archive | Adv Search |
THE INTERFACIAL THERMAL STABILITY AND ELEMENT DIFFUSION MECHANISM OF SiCf/TC17 COMPOSITE
ZHANG Xu, WANG Yumin, LEI Jiafeng, YANG Rui
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHANG Xu WANG Yumin LEI Jiafeng YANG Rui. THE INTERFACIAL THERMAL STABILITY AND ELEMENT DIFFUSION MECHANISM OF SiCf/TC17 COMPOSITE. Acta Metall Sin, 2012, 48(11): 1306-1314.

Download:  PDF(1182KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

SiCf/TC17 composites were fabricated by a method of precursor wire with magnetron sputtering using a vacuum hot pressing (VHP) process and then exposed in vacuum at 973, 1023, 1073 and 1123 K for different times, respectively. The results show that element diffusions include interdiffusion caused by interfacial reaction and concentration gradient, and phase transformation diffusion in matrix. C and Ti mainly carry on reaction diffusion which is the reason of formation and growing up of reaction layer. Si, Al, Mo, Cr, Zr and Sn carry on downhill diffusion at interface of C-coating layer and reaction layer, but this type of diffusion is not obvious. Phase transformation diffusion in matrix lead to that Al diffuse to α phase, Mo and Cr diffuse to β phase, and Sn diffuse to Ti3AlC, so the interfacial interdiffusions of these elements is suppressed. The results of the interfacial thermal stability show that the activation energy of reaction lay growing up is 138 kJ/mol, and the interface of SiCf/TC17 composite is stable for long time while it is used not above 973 K.

Key words:  titanium matrix composite      SiC fiber      interfacial reaction      element diffusion      phase transformation     
Received:  11 June 2012     
ZTFLH:  TG146.23  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00347     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1306

[1] Mukherjee S, Ananth C R, Chandra N. Composites, 1998; 29A: 1213

[2] Wadsworth J, Froes F H. J Met, 1989; 41: 12

[3] Doychak J. J Met, 1992; 44: 46

[4] Jeng S M, Alassoeur P, Yang J M, Aksoy S. Mater Sci Eng, 1991; A148: 67

[5] Yang Y Q, Zhu Y, Zhang J Y, Ma Z J, Chen Y. Acta Metall Sin, 2002; 38(suppl): 466

(杨延清, 朱艳, 张晶宇, 马志军, 陈彦. 金属学报, 2002; 38(增刊): 466)

[6] Kyeong H B, Patrick S G. Scr Mater, 2001; 44: 607

[7] Jones C, Kiely C J, Wang S S. J Mater Res, 1989; 4: 327

[8] Lerch B A, Hull D R, Leonhardt T A. Composites, 1990; 21: 216

[9] Das G. Metall Mater Trans, 1990; 21A: 1571

[10] Grace K G, Jeffrey A G, Martha L M. Scr Metall Mater, 1992; 26: 1043

[11] Smith P R, Graves J A, Rhodes C G. Metall Mater Trans, 1994; 25A: 1267

[12] Hall I W, Lirn J L, Rizza J. J Mater Sci Lett, 1991; 10: 263

[13] Rodney B, Gerhard W, Collings E W. Materials Properties Handbook: Titanium Alloys. United States of America: ASM International, 1994: 453

[14] Shi N L. Mater Rev, 2000; 14: 53

(石南林. 材料导报, 2000; 14: 53)

[15] Shi N L, Liu Q M, Chang X C, Quan R, Xia F. Acta Metall Sin, 1990; 26: 153

(石南林, 刘清民, 常新春, 全荣, 夏非, 金属学报, 1990; 26: 153)

[16] Subramanian P R, Krishnamurthy S, Keller S T, Mendiratta M G. Mater Sci Eng, 1998; A244: 1

[17] Zhao Y Q, Zhou L, Alain V. Rare Met Mater Eng, 2003; 32: 161

(赵永庆, 周廉, Alain V. 稀有金属材料与工程, 2003; 32: 161)

[18] Han X,Wang M Z, Liang B Y. Rare Met Mater Eng, 2010; 39(suppl): 204

(韩欣, 王明智, 梁宝岩. 稀有金属材料与工程, 2010; 39(增刊): 204)

[19] Dybkov V I. J Mater Sci, 1986; 21: 3078

[20] Martineau P, Lahaye M, Pailler R, Naslain R, Couzi M, Cruege F. J Mater Sci, 1984; 19: 2749

[21] Xun Y W, Tan M J, Zhou J T. J Mater Process Technol, 2000; 102: 215

[22] Wang Y M. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2005

(王玉敏. 中国科学院金属研究所博士学位论文, 沈阳, 2005)

[23] Zhang S Z. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004

(张尚洲.中国科学院金属研究所博士学位论文, 沈阳, 2004)

[24] Yang Y Q, Zhu Y, Ma Z J, Chen Y. Scr Mater, 2004; 51: 385

[25] L¨u X H, Yang Y Q, Ma Z J, Chen Y. Rare Met Mater Eng, 2006; 35: 164

(吕祥鸿, 杨延青, 马志军, 陈彦. 稀有金属材料与工程, 2006; 35: 164)

[26] Ning X J, Pirouz P. J Mater Res, 1991; 6: 2234

[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[8] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[9] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[10] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[11] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[12] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[13] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[14] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[15] WU Yupeng, ZHANG Bo, LI Jingming, ZHANG Shuangnan, WU Ying, WANG Yumin, CAI Guixi. Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring[J]. 金属学报, 2020, 56(8): 1175-1184.
No Suggested Reading articles found!