|
|
THE INTERFACIAL THERMAL STABILITY AND ELEMENT DIFFUSION MECHANISM OF SiCf/TC17 COMPOSITE |
ZHANG Xu, WANG Yumin, LEI Jiafeng, YANG Rui |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article:
ZHANG Xu WANG Yumin LEI Jiafeng YANG Rui. THE INTERFACIAL THERMAL STABILITY AND ELEMENT DIFFUSION MECHANISM OF SiCf/TC17 COMPOSITE. Acta Metall Sin, 2012, 48(11): 1306-1314.
|
Abstract SiCf/TC17 composites were fabricated by a method of precursor wire with magnetron sputtering using a vacuum hot pressing (VHP) process and then exposed in vacuum at 973, 1023, 1073 and 1123 K for different times, respectively. The results show that element diffusions include interdiffusion caused by interfacial reaction and concentration gradient, and phase transformation diffusion in matrix. C and Ti mainly carry on reaction diffusion which is the reason of formation and growing up of reaction layer. Si, Al, Mo, Cr, Zr and Sn carry on downhill diffusion at interface of C-coating layer and reaction layer, but this type of diffusion is not obvious. Phase transformation diffusion in matrix lead to that Al diffuse to α phase, Mo and Cr diffuse to β phase, and Sn diffuse to Ti3AlC, so the interfacial interdiffusions of these elements is suppressed. The results of the interfacial thermal stability show that the activation energy of reaction lay growing up is 138 kJ/mol, and the interface of SiCf/TC17 composite is stable for long time while it is used not above 973 K.
|
Received: 11 June 2012
|
|
[1] Mukherjee S, Ananth C R, Chandra N. Composites, 1998; 29A: 1213[2] Wadsworth J, Froes F H. J Met, 1989; 41: 12[3] Doychak J. J Met, 1992; 44: 46[4] Jeng S M, Alassoeur P, Yang J M, Aksoy S. Mater Sci Eng, 1991; A148: 67[5] Yang Y Q, Zhu Y, Zhang J Y, Ma Z J, Chen Y. Acta Metall Sin, 2002; 38(suppl): 466(杨延清, 朱艳, 张晶宇, 马志军, 陈彦. 金属学报, 2002; 38(增刊): 466)[6] Kyeong H B, Patrick S G. Scr Mater, 2001; 44: 607[7] Jones C, Kiely C J, Wang S S. J Mater Res, 1989; 4: 327[8] Lerch B A, Hull D R, Leonhardt T A. Composites, 1990; 21: 216[9] Das G. Metall Mater Trans, 1990; 21A: 1571[10] Grace K G, Jeffrey A G, Martha L M. Scr Metall Mater, 1992; 26: 1043[11] Smith P R, Graves J A, Rhodes C G. Metall Mater Trans, 1994; 25A: 1267[12] Hall I W, Lirn J L, Rizza J. J Mater Sci Lett, 1991; 10: 263[13] Rodney B, Gerhard W, Collings E W. Materials Properties Handbook: Titanium Alloys. United States of America: ASM International, 1994: 453[14] Shi N L. Mater Rev, 2000; 14: 53(石南林. 材料导报, 2000; 14: 53)[15] Shi N L, Liu Q M, Chang X C, Quan R, Xia F. Acta Metall Sin, 1990; 26: 153(石南林, 刘清民, 常新春, 全荣, 夏非, 金属学报, 1990; 26: 153)[16] Subramanian P R, Krishnamurthy S, Keller S T, Mendiratta M G. Mater Sci Eng, 1998; A244: 1[17] Zhao Y Q, Zhou L, Alain V. Rare Met Mater Eng, 2003; 32: 161(赵永庆, 周廉, Alain V. 稀有金属材料与工程, 2003; 32: 161)[18] Han X,Wang M Z, Liang B Y. Rare Met Mater Eng, 2010; 39(suppl): 204(韩欣, 王明智, 梁宝岩. 稀有金属材料与工程, 2010; 39(增刊): 204)[19] Dybkov V I. J Mater Sci, 1986; 21: 3078[20] Martineau P, Lahaye M, Pailler R, Naslain R, Couzi M, Cruege F. J Mater Sci, 1984; 19: 2749[21] Xun Y W, Tan M J, Zhou J T. J Mater Process Technol, 2000; 102: 215[22] Wang Y M. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2005(王玉敏. 中国科学院金属研究所博士学位论文, 沈阳, 2005)[23] Zhang S Z. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004(张尚洲.中国科学院金属研究所博士学位论文, 沈阳, 2004)[24] Yang Y Q, Zhu Y, Ma Z J, Chen Y. Scr Mater, 2004; 51: 385[25] L¨u X H, Yang Y Q, Ma Z J, Chen Y. Rare Met Mater Eng, 2006; 35: 164(吕祥鸿, 杨延青, 马志军, 陈彦. 稀有金属材料与工程, 2006; 35: 164)[26] Ning X J, Pirouz P. J Mater Res, 1991; 6: 2234 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|