Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 129-134    DOI: 10.3724/SP.J.1037.2011.00755
论文 Current Issue | Archive | Adv Search |
EVOLUTIONS OF MICROSTRUCTURE AND MICROTEXTURE IN AZ21 Mg ALLOY DURING MULTI–DIRECTIONAL FORGING UNDER DECREASING TEMPERATURE CONDITIONS
YANG Xuyue 1,2, SUN Huan 1, WU Xinxing 1, MA Jijun 1, QIN Jia 1, HUO Qinghuan 1
1. School of Materials Science and Engineering, Central South University, Changsha 410083
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083
Cite this article: 

YANG Xuyue SUN Huan WU Xinxing MA Jijun QIN Jia HUO Qinghuan. EVOLUTIONS OF MICROSTRUCTURE AND MICROTEXTURE IN AZ21 Mg ALLOY DURING MULTI–DIRECTIONAL FORGING UNDER DECREASING TEMPERATURE CONDITIONS. Acta Metall Sin, 2012, 48(2): 129-134.

Download:  PDF(923KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Grain refinement and texture evolution of a magnesium alloy AZ21 were investigated during multi–directional forging under decreasing temperature from 673 K to 433 K. Dynamic recrystallization (DRX) and texture development were studied at 673 K by OM and SEM/EBSD techniques. The flow curves show rapid hardening accompanied by a stress peak at relatively low strains, followed by strain softening and then a steady state flow stress at high strains. Kink bands with low to medium angle misorientations are evolved at corrugated grain boundaries and also frequently in grain interiors at low strains. Some of them intersect with each other, leading to the fragmentation of original grains. The alignment of the basal planes initially parallel to the compression axis rotated gradually by compression at 673 K and approached an orientation perpendicular to the compression axis at ε=1.2. The relative intensity of texture decreases rapidly with increasing strain to ε=0.4 and goes up later. A similar trend of texture evolution is recognized for the second pass, implying slightly effect of temperature but rather of strain. It is also concluded that increasing the deformation passes can lead to a decrease in texture intensity.
Key words:  magnesium alloy      multi-directional forging under decreasing temperature      grain refinement      kink band      microtexture evolution     
Received:  05 December 2011     
ZTFLH: 

TG146.2

 
Fund: 

Supported by National Natural Science Foundation of China (No.51071182)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00755     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/129

[1] Perez–Prado M T, Valle J A, Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661

[2] Robert G, Matthias M F, Gunter G. Mater Sci Eng, 2005; A395: 338

[3] Chino Y, Mabuchi M. Adv Eng Mater, 2001; 3: 981

[4] Akihiro Y, Zenji H, Terence G. Mater Sci Eng, 2001; A300: 142

[5] Kim H K, Kim W J. Mater Sci Eng, 2004; A385: 300

[6] Chang H, Zheng M Y, Wu K, Gan W M, Tong L B, Brokmeier H G. Mater Sci Eng, 2010; A527: 7176

[7] Li X, Al–Samman T, Gottstein G. Mater Lett, 2011; 65: 1907

[8] Kim W J, Park J D, Wang J Y, Yoon W S. Scr Mater, 2007; 57: 755

[9] Xing J, Sohde H, Yang X Y, Miura H, Sakai T. Mater Trans, 2005; 46: 1646

[10] Xin Y C, Wang M Y, Zeng Z, Huang G J, Liu Q. Scr Mater, 2011; 64: 986

[11] Stanford N, Barnett M R. Scr Mater, 2008; 58: 179

[12] Xing J, Yang X Y, Miura H, Sakai T. Mater Trans, 2008; 49: 69

[13] Miura H, Yu G, Yang X Y. Mater Sci Eng, 2011; A528: 6981

[14] Somjeet B, Satyam S. Scr Mater, 2012; 66: 89

[15] Miukai T, Yamanoi M, Watanabe H, Higashi K. Scr Mater, 2001; 45: 89

[16] Miura H, Yang X Y, Sakai T, Nogawa H, Watanabe Y, Miura S, Jonas J J. Philos Mag, 2005; 85: 3553

[17] Foley D C, Al–Maharbi M, Hartwig K T, Karaman I, Kecskes L J, Mathaudhu S N. Scr Mater, 2011; 64: 193

[18] Sakai T, Jonas J J. Acta Metall, 1984; 32: 189

[19] Gourdet S, Montheillet F. Acta Mater, 2003; 51: 2685

[20] Yang X Y, Ji Z S, Miura H, Sakai T. Trans Nonferrous Met Soc China, 2009; 19: 55

[21] Li X, Yang P, Wang L N, Meng L, Cui F. Mater Sci Eng, 2009; A517: 160

[22] Yang X Y, Miuna H, Sakai T. Mater Trans, 2003; 44: 197

[23] Yang X Y, Jiang Y P. Acta Metall Sin, 2010; 46: 451

(杨续跃, 姜育培. 金属学报, 2010; 46: 451)

[24] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A490: 411

[25] Wu X X, Yang X Y, Zhang L, Zhang Z L. Acta Metall Sin, 2011; 47: 140

(吴新星, 杨续跃, 张雷, 张之岭. 金属学报, 2011; 47: 140)

[26] Barnett M R, Keshavarz Z, Beer A G, Atwell D. Acta Mater, 2004; 52: 5093

[27] Wu S K, Chou T S, Wang J Y. Mater Sci Forum, 2003; 419–422: 527

[28] Tanno Y, Mukai T, Asakawa M. Mater Sci Forum, 2003; 419–422: 359

[29] Yoshida Y, Cisar L, Kamado S, Kojimo Y. Mater Trans, 2003; 44: 468
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[5] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[6] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[7] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[8] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[9] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[10] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[11] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[12] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[13] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[14] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[15] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
No Suggested Reading articles found!