Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 129-134    DOI: 10.3724/SP.J.1037.2011.00755
论文 Current Issue | Archive | Adv Search |
YANG Xuyue 1,2, SUN Huan 1, WU Xinxing 1, MA Jijun 1, QIN Jia 1, HUO Qinghuan 1
1. School of Materials Science and Engineering, Central South University, Changsha 410083
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083
Download:  PDF(923KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Grain refinement and texture evolution of a magnesium alloy AZ21 were investigated during multi–directional forging under decreasing temperature from 673 K to 433 K. Dynamic recrystallization (DRX) and texture development were studied at 673 K by OM and SEM/EBSD techniques. The flow curves show rapid hardening accompanied by a stress peak at relatively low strains, followed by strain softening and then a steady state flow stress at high strains. Kink bands with low to medium angle misorientations are evolved at corrugated grain boundaries and also frequently in grain interiors at low strains. Some of them intersect with each other, leading to the fragmentation of original grains. The alignment of the basal planes initially parallel to the compression axis rotated gradually by compression at 673 K and approached an orientation perpendicular to the compression axis at ε=1.2. The relative intensity of texture decreases rapidly with increasing strain to ε=0.4 and goes up later. A similar trend of texture evolution is recognized for the second pass, implying slightly effect of temperature but rather of strain. It is also concluded that increasing the deformation passes can lead to a decrease in texture intensity.
Key words:  magnesium alloy      multi-directional forging under decreasing temperature      grain refinement      kink band      microtexture evolution     
Received:  05 December 2011     



Supported by National Natural Science Foundation of China (No.51071182)

Corresponding Authors:  YANG Xuyue     E-mail:

Cite this article: 


URL:     OR

[1] Perez–Prado M T, Valle J A, Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661

[2] Robert G, Matthias M F, Gunter G. Mater Sci Eng, 2005; A395: 338

[3] Chino Y, Mabuchi M. Adv Eng Mater, 2001; 3: 981

[4] Akihiro Y, Zenji H, Terence G. Mater Sci Eng, 2001; A300: 142

[5] Kim H K, Kim W J. Mater Sci Eng, 2004; A385: 300

[6] Chang H, Zheng M Y, Wu K, Gan W M, Tong L B, Brokmeier H G. Mater Sci Eng, 2010; A527: 7176

[7] Li X, Al–Samman T, Gottstein G. Mater Lett, 2011; 65: 1907

[8] Kim W J, Park J D, Wang J Y, Yoon W S. Scr Mater, 2007; 57: 755

[9] Xing J, Sohde H, Yang X Y, Miura H, Sakai T. Mater Trans, 2005; 46: 1646

[10] Xin Y C, Wang M Y, Zeng Z, Huang G J, Liu Q. Scr Mater, 2011; 64: 986

[11] Stanford N, Barnett M R. Scr Mater, 2008; 58: 179

[12] Xing J, Yang X Y, Miura H, Sakai T. Mater Trans, 2008; 49: 69

[13] Miura H, Yu G, Yang X Y. Mater Sci Eng, 2011; A528: 6981

[14] Somjeet B, Satyam S. Scr Mater, 2012; 66: 89

[15] Miukai T, Yamanoi M, Watanabe H, Higashi K. Scr Mater, 2001; 45: 89

[16] Miura H, Yang X Y, Sakai T, Nogawa H, Watanabe Y, Miura S, Jonas J J. Philos Mag, 2005; 85: 3553

[17] Foley D C, Al–Maharbi M, Hartwig K T, Karaman I, Kecskes L J, Mathaudhu S N. Scr Mater, 2011; 64: 193

[18] Sakai T, Jonas J J. Acta Metall, 1984; 32: 189

[19] Gourdet S, Montheillet F. Acta Mater, 2003; 51: 2685

[20] Yang X Y, Ji Z S, Miura H, Sakai T. Trans Nonferrous Met Soc China, 2009; 19: 55

[21] Li X, Yang P, Wang L N, Meng L, Cui F. Mater Sci Eng, 2009; A517: 160

[22] Yang X Y, Miuna H, Sakai T. Mater Trans, 2003; 44: 197

[23] Yang X Y, Jiang Y P. Acta Metall Sin, 2010; 46: 451

(杨续跃, 姜育培. 金属学报, 2010; 46: 451)

[24] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A490: 411

[25] Wu X X, Yang X Y, Zhang L, Zhang Z L. Acta Metall Sin, 2011; 47: 140

(吴新星, 杨续跃, 张雷, 张之岭. 金属学报, 2011; 47: 140)

[26] Barnett M R, Keshavarz Z, Beer A G, Atwell D. Acta Mater, 2004; 52: 5093

[27] Wu S K, Chou T S, Wang J Y. Mater Sci Forum, 2003; 419–422: 527

[28] Tanno Y, Mukai T, Asakawa M. Mater Sci Forum, 2003; 419–422: 359

[29] Yoshida Y, Cisar L, Kamado S, Kojimo Y. Mater Trans, 2003; 44: 468
[1] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[2] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[3] ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. 金属学报, 2019, 55(9): 1145-1159.
[4] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[5] ZHOU Bo, SUI Manling. Generation and Interaction Mechanism of Tension Kink Band in AZ31 Magnesium Alloy[J]. 金属学报, 2019, 55(12): 1512-1518.
[6] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[7] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[8] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[9] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[10] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[11] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
[12] Shujun CHEN, Xuan WANG, Tao YUAN, Xiaoxu LI. Research on Prediction Method of Liquation Cracking Susceptibility to Magnesium Alloy Welds[J]. 金属学报, 2018, 54(12): 1735-1744.
[13] Guangming XIE, Zongyi MA, Peng XUE, Zongan LUO, Guodong WANG. Effects of Tool Rotation Rates on Superplastic Deformation Behavior of Friction Stir Processed Mg-Zn-Y-Zr Alloy[J]. 金属学报, 2018, 54(12): 1745-1755.
[14] Yizhe MAO, Jianguo LI, Lei FENG. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression[J]. 金属学报, 2018, 54(10): 1451-1460.
[15] Lili ZHANG, Hongxiang JIANG, Jiuzhou ZHAO, Lu LI, Qian SUN. A New Understanding Toward Effect of Solute Ti on Grain Refinement of Aluminum by Al-Ti-B Master Alloy: Kinetic Behaviors of TiB2 Particles and Effect of Solute Ti[J]. 金属学报, 2017, 53(9): 1091-1100.
No Suggested Reading articles found!