Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (3): 329-333    DOI: 10.3724/SP.J.1037.2011.00703
论文 Current Issue | Archive | Adv Search |
EXPERIMENTAL RESEARCH ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK
CHEN Liutao, ZHANG Huawei, LIU Yuan, LI Yanxiang
Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084
Cite this article: 

CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. EXPERIMENTAL RESEARCH ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK. Acta Metall Sin, 2012, 48(3): 329-333.

Download:  PDF(1661KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Porous copper with long cylindrical pores has been fabricated by unidirectional solidification of metal-gas eutectic system, which can be used to manufacture a special kind of micro-channel heat sink. The heat transfer performance of the directionally solidified porous copper heat sink with a length of 20 mm along the axial direction of pores was studied. The experimental results show that the directionally solidified porous copper heat sink has excellent heat transfer performance and a heat transfer coefficient of 5 W/(cm2·K) is attainable when a porosity is 29% and mean pore diameter is\linebreak 400 μm, and it shows a larger heat transfer coefficient of 6.5 W/(cm2·K) after cutting the porous copper along the vertical direction of pore axis into two sections alined in the direction of pore axis. Increasing the length of porous copper heat sink along the direction of pore axis will reduce the penetration ratio of pores and then weaken the heat transfer performance of the heat sink. Thus some methods have to be taken to increase the pore length and ratio of penetrating pores when fabricating directionally solidified porous copper heat sink.
Key words:  heat sink      micro-channel cooling      porous metal      metal-gas eutectic      unidirectional solidification     
Received:  14 November 2011     
ZTFLH: 

TG24

 
  TG146

 
Fund: 

Supported by Joint Funds of National Natural Science Foundation of China and Yunnan Province No.U0837603), Beijing Natural Science Foundation (No.2092017), National Natural Science Foundation of China for Young Scientists (No.{\footnotesize\it 51101092}), Found of Key Laboratory for Advanced Materials Processing Technology, Ministry of Education (No.2010011)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00703     OR     https://www.ams.org.cn/EN/Y2012/V48/I3/329

[1] Shapovalov V I. MRS Bull, 1994; 4: 24

[2] Liu Y, Li Y X, Zhang H W, Wan J. Acta Metall Sin, 2005; 41: 886

(刘源, 李言祥, 张华伟, 万 疆. 金属学报, 2005; 41: 886)

[3] Liu Y, Li Y X, Wan J, Zhang H W. Mater Sci Eng, 2005; A402: 47

[4] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1165

(张华伟, 李言祥, 刘源. 金属学报, 2006; 42: 1165)

[5] Li Y X, Liu Y, Zhang H W, Wang X. In: Nakajima H, Kanetake N eds., Proceedings of MetFoam 2005, Sendai: The Japan Institute of Metals, 2006: 237

[6] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1171

(张华伟, 李言祥, 刘源. 金属学报, 2006; 42: 1171)

[7] Wang X, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1075

(王雪, 李言祥, 刘 源. 金属学报, 2006; 42: 1075)

[8] Kov´aˇcik J. Acta Mater, 1998; 46: 5413

[9] Hyun S K, Murakami H, Nakajima H. Mater Sci Eng, 2001; A299: 241

[10] Ogushi T, Chiba H, Nakajima H, Ikeda T. J Appl Phys, 2004; 95: 5843

[11] Chiba H, Ogushi T, Nakajima H, Torji K, Tomimura T, Ono F. J Appl Phys, 2008; 103: 013515

[12] Tane M, Hyun S K, Nakajima H. J Appl Phys, 2005; 97: 103701

[13] Xie Z K, Ikeda T, Okuda Y, Nakajima H. Mater Sci Eng, 2004; A386: 390

[14] Xie Z K, Ikeda T, Okuda Y, Nakajima H. Mater Sci Forum, 2004; 449–452: 661

[15] Mahajan R, Nair R, Wakharkar V, Swan J, Tang J, Vandentop G. Intel Technol J, 2002; 6: 61

[16] Tuckerman D B, Pease R F W. IEEE Electron Dev Lett, 1981; 2: 126

[17] Rosa P, Karayiannis T G, Collins M W. Appl Therm Eng, 2009; 29: 3447

[18] Wei X J. J Electron Packaging, 2004; 126: 60

[19] Ogushi T, Chiba H, Nakajima H. In: Nakajima H, Kanetake N eds., Proceedings of MetFoam 2005, Sendai: The Japan Institute of Metals, 2006: 27

[20] Chiba H, Ogushi T, Nakajima H. In: Nakajima H, Kanetake N eds., Proceedings of MetFoam 2005, Sendai: The Japan Institute of Metals, 2006: 35

[21] Li M. Master Dissertation, Tsinghua University, Beijing, 2002

(李勐. 清华大学硕士学位论文, 北京, 2002)
[1] XU Wence, CUI Zhenduo, ZHU Shengli. Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications[J]. 金属学报, 2022, 58(12): 1527-1544.
[2] PENG Wuqingliang, LI Qiang, CHANG Yongqin, WANG Wanjing, CHEN Zhen, XIE Chunyi, WANG Jichao, GENG Xiang, HUANG Lingming, ZHOU Haishan, LUO Guangnan. A Review on the Development of the Heat Sink of the Fusion Reactor Divertor[J]. 金属学报, 2021, 57(7): 831-844.
[3] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[4] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
[5] LI Zaijiu, JIN Qinglin, YANG Tianwu, ZHOU Rong, JIANG Yehua. A THERMODYNAMIC MODEL FOR DIRECTIONAL SOLIDIFICATION OF METAL-HYDROGEN EUTECTIC[J]. 金属学报, 2014, 50(4): 507-514.
[6] YANG Qianqian, LIU Yuan, LI Yanxiang. MODELING AND SIMULATION OF STRUCTURAL FORMATION OF POROUS ALUMINUM IN GASAR SOLIDIFICATION[J]. 金属学报, 2014, 50(11): 1403-1412.
[7] PENG Dongjian, LIN Xin, ZHANG Yunpeng, GUO Xiong, WANG Meng, HUANG Weidong. INVESTIGATION OF EFFECT OF INTERFACE ENERGY ANISOTROPY ON DENDRITIC GROWTH IN UNIDIRECTIONAL SOLIDIFICATION BY FRONT TRACKING SIMULATION[J]. 金属学报, 2013, 49(3): 365-371.
[8] CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. THEORETICAL STUDY ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. 金属学报, 2012, 48(11): 1374-1380.
[9] LIU Yuan LI Yanxiang LIU Runfa ZHOU Rong JIANG Yehua LI Zhenhua. THEORETICAL ANALYSIS ON EFFECT OF TRANSFERENCE VELOCITY ON STRUCTURE OF POROUS METALS FABRICATED BY CONTINUOUS CASTING GASAR PROCESS[J]. 金属学报, 2010, 46(2): 129-134.
[10] GAN Chunlei LIU Xuefeng HUANG Haiyou XIE Jianxin. FABRICATION PROCESS, MICROSTRUCTURE AND MECHANICAL PROPERTIES OF BFe10–1–1 ALLOY TUBES BY CONTINUOUS UNIDIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2010, 46(12): 1549-1556.
[11] QIAO Junwei ZHANG Yong CHEN Guoliang. SYNTHESIS OF PLASTIC Zr–BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2009, 45(4): 410-414.
[12] . Effect of Transverse Convection Induced by Density Differences on Bidirectional Solidification of Metal-Gas Eutectic[J]. 金属学报, 2008, 44(9): 1057-1062 .
[13] Hua-Wei ZHANG. The Critical Processing Conditions for Directional Solidification of Solid/Gas Eutectics[J]. 金属学报, 2007, 43(6): 589-594 .
[14] Hua-Wei ZHANG. Hydrogen Solubility in Pure Metals for Gasar Process[J]. 金属学报, 2007, 43(2): 113-118 .
[15] Hua-Wei ZHANG. Difficulty in Fabricating Lotus-type Porous Al by Gasar Process[J]. 金属学报, 2007, 42(1): 11-16 .
No Suggested Reading articles found!