Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (7): 965-970    DOI: 10.3724/SP.J.1037.2011.00208
论文 Current Issue | Archive | Adv Search |
EFFECTS OF RADIATION AND He ON MICROSTRUCTURES OF LOW ACTIVE FERRITIC/MARTENSITIC STEEL F82H
TONG Zhenfeng, DAI Yong, YANG Wen, YANG Qifa
1) China Insitute of Atomic Energy, Beijing 102413
2) Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
Cite this article: 

TONG Zhenfeng DAI Yong YANG Wen YANG Qifa. EFFECTS OF RADIATION AND He ON MICROSTRUCTURES OF LOW ACTIVE FERRITIC/MARTENSITIC STEEL F82H. Acta Metall Sin, 2011, 47(7): 965-970.

Download:  PDF(1031KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Low active ferritic/martensitic steel, F82H, has been developed as a candidate material for structural
applications of fusion reactors because it has relatively low shifts in ductile-to-brittle transition temperature
(DBTT) and excellent irradiation swell resistance. More works have been done in recent years on the
microstructure and mechanical properties of F82H steel before and after irradiation, but most of the tested samples were
irradiated at low temperature (<400 ℃). In this work, the microstructure of F82H steel irradiated in the Swiss
spallation neutron source SINQ in a temperature range of 150-450 ℃ and a dose range of 6.1-20.2 dpa was
studied. Defect clusters and He bubble were observed by TEM in the irradiated specimens.
The results showed that there existed high density He bubbles with size of 1.6 nm under irradiation temperature higher than
208℃, irradiation dose higher than 9.5 dpa and He concentration 680×10-6. The effects of
irradiation dose, irradiation temperature and He concentration on microstructure of F82H steel were discussed.
Key words:  low active ferritic/martensitic steel      radiation      displacement damage      He bubble     
Received:  06 April 2011     
Fund: 

Supported by National Basic Research Program of China (No.2011CB610503) and National Natural Science Foundation of China (No.10975194)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00208     OR     https://www.ams.org.cn/EN/Y2011/V47/I7/965

[1] Klueh R L, Harries D R. High–Chromium Ferritic and Martensitic Steels for Nuclear Applications. West Conshohocken, PA: ASTM, 2001: 19

[2] Kohyama A, Hishinuma A, Gelles D S, Klueh R L, Dietz W, Ehrlich K. J Nucl Mater, 1996; 233–237: 138

[3] Miwa Y, Wakai E, Shiba K, Hashimoto N, Robertson J P, Rowcli A F, Hishinuma A. J Nucl Mater, 2000; 283–287: 334

[4] Schaublin R, Spatig P, Victoria M. J Nucl Mater, 1998; 258–263: 1178

[5] Sawai T,Wakai E, TomitaT, NaitoA, Jitsukawa S. J Nucl Mater, 2002; 307–311: 312

[6] Spatig P, Schaublin R, Gyger S, Victoria M. J NuclMater, 1998; 258–263: 1345

[7] Shiba K, Suzuki M, Hishinuma A. J Nucl Mater, 1996; 233–237: 309

[8] Jitsukawa S, Tamura M, vander Schaaf B, Klueh R L, Alamo A, Petersen C, Schirra M, Spaetig P, Odette G R, Tavassoli A A, Shiba K, Kohyama A, Kimura A. J Nucl Mater, 2002; 307–311: 179

[9] Stamm U, Schroeder H. J Nucl Mater, 1988; 155–157: 1059

[10] Ullmaier H. Radiat Eff, 1983; 78: 1

[11] Klueh R L, Hashimoto N, Sokolov M A, Shiba K, Jitsukawa S. J Nucl Mater, 2006; 357: 156

[12] Malaplate J, Vincent L, Averty X, Henry J, Marini B. Eng Fract Mech, 2008; 75: 3570

[13] Henry J, Vincent L, Averty X, Marini B, Jung P. J Nucl Mater, 2007; 367–370: 411

[14] Tong Z, Dai Y. J Nucl Mater, 2010; 398: 43

[15] Gupta G, Jiao Z, Ham A N, Busby J T, Was G S. J Nucl Mater, 2006; 351: 162

[16] Dai Y, Foucher Y, James M R, Oliver B M. J Nucl Mater, 2003; 318: 167

[17] Jiao Z, Ham N, Was G S. J Nucl Mater, 2007; 367–370: 440

[18] Trinkaus H, Singh B N. J Nucl Mater, 2003; 323: 229

[19] Jia X, Dai Y. J Nucl Mater, 2006; 356: 105
[1] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[2] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[3] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[4] ZHU Xiaohui, LIU Xiangbing, WANG Runzhong, LI Yuanfei, LIU Wenqing. Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC[J]. 金属学报, 2022, 58(7): 905-910.
[5] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[6] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[7] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[8] YI Xiaoou, HAN Wentuo, LIU Pingping, FERRONI Francesco, ZHAN Qian, WAN Farong. Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten[J]. 金属学报, 2021, 57(3): 257-271.
[9] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[10] LI Tianxin, LU Yiping, CAO Zhiqiang, WANG Tongmin, LI Tingju. Opportunity and Challenge of Refractory High-Entropy Alloys in the Field of Reactor Structural Materials[J]. 金属学报, 2021, 57(1): 42-54.
[11] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[12] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[13] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[14] Yucheng WU. Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor[J]. 金属学报, 2019, 55(8): 939-950.
[15] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
No Suggested Reading articles found!