Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (6): 655-662    DOI: 10.3724/SP.J.1037.2010.00713
论文 Current Issue | Archive | Adv Search |
EFFECT OF La AND Hf DOPANT ON THE HIGH TEMPERATURE OXIDATION OF CoNiCrAl ALLOYS
SONG Peng 1,2, LU Jiansheng 1, ZHANG Defeng 1, L¨U Jianguo 3, LI Dejiang 4
1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2. Forschungszentrum Juelich, IEK–2, Juelich 52425, Germany
3. Faculty of Applied Technology, Kunming University of Science and Technology, Kunming 650093
4. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
Cite this article: 

SONG Peng LU Jiansheng ZHANG Defeng LU Jianguo LI Dejiang. EFFECT OF La AND Hf DOPANT ON THE HIGH TEMPERATURE OXIDATION OF CoNiCrAl ALLOYS. Acta Metall Sin, 2011, 47(6): 655-662.

Download:  PDF(4924KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  CoNiCrAl alloys are widely used as bond coats for thermal barrier coating (TBC) at high operating temperature for energy conversion systems, especially turbine. However, the effect of reactive element (RE) on the oxidation behavior of CoNiCrAl alloys is still not uniform, thereby limiting the usage of the alloys. To study the effect of co–doped RE, the polished cast CoNiCrAlLa, CoNiCrAlHf and CoNiCrAlLaHf alloys were oxidized at 1100 ℃ in vacuum. Growth kinetics and adherence of oxide scales formed on above alloys were studied through comparing mass dynamics curves and tracer oxidation of the alloys. SEM, TG and XRD as well as secondary neutrals mass spectrometry (SNMS) were employed to study the microstructure and growth mechanism of the oxide layers. The results showed that a protective Al2O3 scale formed on the surface of CoNiCrAlLaHf alloy, and the Al2O3 scale showed a good adherence due to a pinning effect of the internal oxidation and less Ni(Co)Al2O4 formation. The Hf could suppress La enrichment at the oxide/alloy interface for the co–doped alloy. Oxygen inwards–diffusion along the oxide, which mainly controlled oxide scale growth, was observed when these three alloys oxidized in the atmospheres including tracer 18O. Enrichment of Cr, Co and Ni occurred at the outer part of oxide scale, and then decreased to a low level within the oxide layer. These Cr, Co and Ni enrichments could promote the Ni(Co)Al2O4 formation at the top of oxide scale for the single–doped alloys, which was detrimental to Al2O3 adherence properties.
Key words:  CoNiCrAl alloy      La      Hf      high temperature oxidation      growth mechanism     
Received:  31 December 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00713     OR     https://www.ams.org.cn/EN/Y2011/V47/I6/655

[1] Padture N P, Gell M, Jordan E H. Science, 2002; 296: 280

[2] Clarke D R, Levi C G. Annu Rev Mater Res, 2003; 33: 383

[3] Evans A G, Mumm D R, Hutchinson J W, Meier G H, Pettit F S. Prog Mater Sci, 2001; 46: 505

[4] Wu R T, Reed R C. Acta Mater, 2008; 56: 313

[5] Nijdama T J, Sloof W G. Acta Mater, 2007; 55: 5980

[6] Naumenko D, Kochubey V, Niewolak L, Dymiati A, Mayer J, Singheiser L, Quadakkers W J. J Mater Sci, 2008; 43: 4550

[7] Haynes J A, Pint B A, More K L, Zhang Y, Wright I G. Oxid Met, 2002; 58: 513

[8] Pint B A. J Am Ceram Soc, 2003; 86: 686

[9] Hamadi S, Bacos M P, Poulain M, Seyeux A, Maurice V, Marcus P. Surf Coat Technol, 2009; 204: 756

[10] Kuenzly J D, Douglass D L. Oxid Met, 1974; 8: 139

[11] Pint B A. Oxid Met, 1996; 45: 1

[12] Carling K M, Carter E A. Acta Mater, 2007; 55: 2791

[13] Evans E. Int Mater Rev, 1995; 40: 1

[14] Wessel E, Kochubey V, Naumenko D, Niewolak L, Singheiser L, Quadakkers W J. Scr Mater, 2004; 51: 987

[15] Young D J, Naumenko D, Niewolak L,Wessel E, Singheiser L, Quadakkers W J. Mater Corros, 2010; 61: 1

[16] Hou P Y. J Mater Sci, 2009; 44: 1711

[17] Soboyejo W O, Mensah P, Diwan R, Crowe J, Akwaboa S. Mater Sci Eng, 2011; A528: 2223

[18] Toscano J P. PhD Thesis, RWTH–Aachen University, Germany, 2008

[19] Quadakkers W J, Elschner A, Holzbrecher H, Schmidt K, Speier W, Nickel H. Microchim Acta, 1992; 107: 197

[20] Quadakkers W J, Naumenko D, Wessel E, Kochubey V, Singheiser L. Oxid Met, 2004; 61: 17

[21] Hou P Y, Izumi T, Gleeson B. Oxid Met, 2009; 752: 109

[22] Patterson T, Leon A, Jayaraj B, Liu J, Sohn Y H. Surf Coat Technol, 2008; 203: 437

[23] Basu S N, Halloran J W. Oxid Met, 1987; 27: 143

[24] Puetz P, Huang X, Lima R S, Yang Q, Zhao L. Surf Coat Technol, 2010; 205: 647

[25] Subanovic M. PhD Thesis, RWTH–Aachen University, Germany, 2009
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[7] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[9] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[10] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[11] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[14] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!