Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (5): 628-633    DOI: 10.3724/SP.J.1037.2010.00712
论文 Current Issue | Archive | Adv Search |
COMPOSITION OPTIMIZATION OF Al-Mg-B THIN FILM PROPERTIES PREPERAED BY MAGNETRON SPUTTERING
QU Wenchao1, 2), WU Aimin1, 2), WU Zhanling1, 3), BAI Yizhen1, 3), JIANG Xin1, 3, 4)
1) School of Materials Science and Engineering, Faculty of Mechanical Engineering and Materials Energy, Dalian University of Technology, Dalian 116024
2) Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024
3) School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
4) Institute of Materials Engineering, University of Siegen, Siegen 57076
Cite this article: 

QU Wenchao WU Aimin WU Zhanling BAI Yizhen JIANG Xin. COMPOSITION OPTIMIZATION OF Al-Mg-B THIN FILM PROPERTIES PREPERAED BY MAGNETRON SPUTTERING. Acta Metall Sin, 2011, 47(5): 628-633.

Download:  PDF(1002KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Aluminum magnesium boron ternary boride (AlMgB14) possesses high hardness, high-temperature oxidation resistance, high temperature corrosion resistance, low density, low friction and other excellent properties, and could be widely used in tool, mold, micro-mechanical manufacture and aerospace, et al. In this paper, Al-Mg-B films have been prepared by multi-target (high pure aluminum, magnesium and boron targets) magnetron sputtering on the silicon (100) substrate at room temperature. The films with an atomic ratio of Al∶Mg∶B=1∶1∶14 were obtained by controlling the sputtering power and the volume ratio of Al/Mg co-target. X-ray diffraction (XRD) and High resolution transmission electron microscopy (HR-TEM) test results show that all the as-deposited films are amorphous. The X-ray photoelectron spectroscopy (XPS) results showe that there are some B-B and Al-B single bond in the as--deposited films, and the Fourier transform infrared spectroscopy (FTIR) tests indicate further that the films possess B12 icosahedra structure. The hardness of the films as shown by nano indentor test will be increasing with the increase of content of B around B-AlMg isoelectronic line and close to boron--rich side, and up to 32 GPa with low friction coefficients of 0.06-0.08.
Key words:  magnetron sputtering      Al-Mg-B film      hardness      B12 icosahedra structure     
Received:  30 December 2010     
Fund: 

Supported by the Fundament Research Funds for the Central Universities (No.DUT10JN08)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00712     OR     https://www.ams.org.cn/EN/Y2011/V47/I5/628

[1] Matkovich V I, Economy J. Acta Crystallogr, 1970; 26B: 616

[2] Wang W H. J Non–Cryst Solids, 2005; 351: 1481

[3] Tian Y, Constant A, Lo C C H, Anderegg J W, Russell A M, Snyder J E, Molian P. J Vac Sci Technol, 2003; 21A: 1055

[4] Higashi W, Ito T. J Less Common Met, 1983; 92: 239

[5] Pellegrino J L, Margolis N, Justiniano M, Miller M, Thedki A. Energy Use, Loss and Opportunities Analysis: U.S. Manufacturing & Mining. U.S. Department of Energy’s Industrial Technologies Program, 2004.12. http://www1.eere.energy.gov/industry/intensiveprocesses/pdfs/energy use loss opportunities analysis.pdf

[6] Cook B A, Harringa J L, Lewis T L, Russell A M. Scr Mater, 2000; 42: 597

[7] Tian Y, Bastawros A F, Lo C C H, Constant A P, Russell A M, Cook B A. Appl Phys Lett, 2003; 83: 2781

[8] Li Z G, Miyake S. Acta Metall Sin, 2010; 46: 13

(李铸国, 三宅正司. 金属学报, 2010; 46: 13)

[9] Tian Y, WomackM, Molian P, Lo C C H, Anderegg J W, Russell A M. Thin Solid Films, 2002; 418: 129

[10] Fjellstedt J, Jarfors A E W, Svendsen L. J Alloys Compd, 1999; 283: 192

[11] Hill J M, Johnston D C, Cook B A, Harringa J L, Russell A M. J Magn Magn Mater, 2003; 265: 23

[12] Lowther J E. Physica, 2002; 322B: 173

[13] Cherukuri R, Womack M, Molian P, Russell A M, Tian Y. Surf Coat Technol, 2002; 155: 112

[14] Roberts D J, Zhao J. F, Munir Z A. Int J Refract Met Hard Mater, 2009; 27: 556

[15] Erdemir A, Bindal C, Fenske G R. Appl Phys Lett, 1996; 68: 1637

[16] Bindal C, Erdemir A. Appl Phys Lett, 1996; 68: 923
[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[3] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[4] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[5] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[6] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[8] TONG Wenhui, ZHANG Xinyuan, LI Weixuan, LIU Yukun, LI Yan, GUO Xuming. Effect of Laser Process Parameters on the Microstructure and Properties of TiC Reinforced Co-Based Alloy Laser Cladding Layer[J]. 金属学报, 2020, 56(9): 1265-1274.
[9] ZHANG Lin, GUO Xiao, GAO Jianwen, DENG Anyuan, WANG Engang. Effect of Electromagnetic Stirring on Microstructure and Mechanical Properties of TiB2 Particle-Reinforced Steel[J]. 金属学报, 2020, 56(9): 1239-1246.
[10] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[11] LIU Yanmei, WANG Tiegang, GUO Yuyao, KE Peiling, MENG Deqiang, ZHANG Jifu. Design, Preparation and Properties of Ti-B-N Nanocomposite Coatings[J]. 金属学报, 2020, 56(11): 1521-1529.
[12] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[13] Bo LI,Zhonghua ZHANG,Huasong LIU,Ming LUO,Peng LAN,Haiyan TANG,Jiaquan ZHANG. Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel[J]. 金属学报, 2019, 55(6): 762-772.
[14] Wentao LI,Zhenyu WANG,Dong ZHANG,Jianguo PAN,Peiling KE,Aiying WANG. Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing[J]. 金属学报, 2019, 55(5): 647-656.
[15] Shasha YANG,Feng YANG,Minghui CHEN,Yunsong NIU,Shenglong ZHU,Fuhui WANG. Effect of Nitrogen Doping on Microstructure and Wear Resistance of Tantalum Coatings Deposited by Direct Current Magnetron Sputtering[J]. 金属学报, 2019, 55(3): 308-316.
No Suggested Reading articles found!