Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (5): 620-627    DOI: 10.3724/SP.J.1037.2010.00642
论文 Current Issue | Archive | Adv Search |
SIMULATION OF NH4Cl-H2O DENDRITIC GROWTH IN DIRECTIONAL SOLIDIFICATION
SHI Yufeng, XU Qingyan, GONG Ming, LIU Baicheng
Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084
Cite this article: 

SHI Yufeng XU Qingyan GONG Ming LIU Baicheng. SIMULATION OF NH4Cl-H2O DENDRITIC GROWTH IN DIRECTIONAL SOLIDIFICATION. Acta Metall Sin, 2011, 47(5): 620-627.

Download:  PDF(1294KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Studying the microstructure evolution mechanism of directional solidification by numerical simulation has the directive significance in the solidification theory and practical production. Taking account of constitutional undercooling, curvature undercooling, preferred growth orientation coefficient, temperature gradient and pulling velocity, a modified cellular automaton (MCA) model has been developed to simulate the influence of different temperature gradient directions, different preferred growth orientations and different pulling velocities on the morphologies of columnar dendrites. The simulation results well describe the influence of inclination angle between temperature gradient and growth direction on primary dendrite arm spacing (PDAS). Meanwhile the simulation results also reproduce the competitive growth of columnar dendrites with different preferred growth orientations and the splitting of the columnar dendritic tips. For the purpose of verifying this model, the relevant experiments have been carried out on an NH4Cl-H2O solution. The experimental results are compared critically with the simulation ones from the MCA model.
Key words:  cellular automaton      NH4Cl-H2O transparent alloy      directional solidification      numerical simulation     
Received:  01 December 2010     
ZTFLH: 

O781

 
Fund: 

Supported by National Natural Science Foundation of China (No.10477010), National Basic Research Program of China (Nos. 2005CB724105 and
2011CB706801), High Technology Research and Development Program of China (No.2007AA04Z141) and Important National Science & Technology Specific Projects (No.2009ZX04006-041-04)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00642     OR     https://www.ams.org.cn/EN/Y2011/V47/I5/620

[1] Hunt J D, Lu S Z. Metall Mater Trans, 1996; 27A: 611

[2] Kurz W, Fisher D J. Acta Metall, 1981; 29: 11

[3] Somboonsuk K, Trivedi R. Acta Metall, 1985; 33: 1051

[4] Huang W, Geng X, Zhou Y. J Cryst Growth, 1993; 134: 105

[5] Rappaz M, Gandin C A. Acta Metall, 1993; 41: 345

[6] Gandin C A, Rappaz M, Tintillier R. Metall Mater Trans, 1994; 25A: 629

[7] Nastac L. Acta Mater, 1999; 47: 4253

[8] Beltran–Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471

[9] WangW, Lee P D, McLean M. Acta Mater, 2003; 51: 2971

[10] Zhu M F, Hong C P. ISIJ Int, 2001; 41: 436

[11] Liu Y, Xu Q Y, Liu B C. Tsinghua Sci Technol, 2006; 11: 495

[12] Shan B W, Huang W D, Lin X, Wei L. Acta Metall Sin, 2008; 44: 1042

(单博炜, 黄卫东, 林鑫, 魏雷. 金属学报, 2008; 44: 1042)

[13] Esaka H. PhD thesis, Ecole Polytechnique Federale de Lausanne, Switzerland, 1986

[14] Hansen G, Liu S, Lu S Z, Hellawell A. J Cryst Growth, 2002; 234: 731

[15] Bennon W D, Incropera F P. Metall Mater Trans, 1987; 18B: 611

[16] Feng Y H, Nie H, Zhang X X. J Eng Thermoph, 2008; 29: 301

(冯妍会, 聂红, 张欣欣. 工程热物理学报, 2008; 29: 301)

[17] Yu J, Xu Q Y, Cui K, Liu B C. Acta Metall Sin, 2007; 43: 731

 (于 靖, 许庆彦, 崔锴, 柳百成. 金属学报, 2007; 43: 731)

[18] Li B, Xu Q Y, Pan D, Liu B C, Xiong Y C, Zhou Y J, Hong R Z. Acta Metall Sin, 2008; 44: 243

(李 斌, 许庆彦, 潘冬, 柳百成, 熊艳才, 周永江, 洪润洲. 金属学报, 2008; 44: 243)

[19] Chen J, Zhu M F, Sun G X. Acta Metall Sin, 2005; 41: 799

(陈晋, 朱鸣芳, 孙国雄. 金属学报, 2005; 41: 799)

[20] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823

[21] Walton D, Chalmers B. Trans Metall Soc AIME, 1959; 215: 447

[22] Langer J S, M¨uller–Krumbhaar H. Acta Metall, 1978; 26: 1681
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[8] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[9] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[11] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[12] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[13] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[14] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[15] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
No Suggested Reading articles found!