|
|
SIMULATION OF NH4Cl-H2O DENDRITIC GROWTH IN DIRECTIONAL SOLIDIFICATION |
SHI Yufeng, XU Qingyan, GONG Ming, LIU Baicheng |
Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 |
|
Cite this article:
SHI Yufeng XU Qingyan GONG Ming LIU Baicheng. SIMULATION OF NH4Cl-H2O DENDRITIC GROWTH IN DIRECTIONAL SOLIDIFICATION. Acta Metall Sin, 2011, 47(5): 620-627.
|
Abstract Studying the microstructure evolution mechanism of directional solidification by numerical simulation has the directive significance in the solidification theory and practical production. Taking account of constitutional undercooling, curvature undercooling, preferred growth orientation coefficient, temperature gradient and pulling velocity, a modified cellular automaton (MCA) model has been developed to simulate the influence of different temperature gradient directions, different preferred growth orientations and different pulling velocities on the morphologies of columnar dendrites. The simulation results well describe the influence of inclination angle between temperature gradient and growth direction on primary dendrite arm spacing (PDAS). Meanwhile the simulation results also reproduce the competitive growth of columnar dendrites with different preferred growth orientations and the splitting of the columnar dendritic tips. For the purpose of verifying this model, the relevant experiments have been carried out on an NH4Cl-H2O solution. The experimental results are compared critically with the simulation ones from the MCA model.
|
Received: 01 December 2010
|
|
Fund: Supported by National Natural Science Foundation of China (No.10477010), National Basic Research Program of China (Nos. 2005CB724105 and
2011CB706801), High Technology Research and Development Program of China (No.2007AA04Z141) and Important National Science & Technology Specific Projects (No.2009ZX04006-041-04) |
[1] Hunt J D, Lu S Z. Metall Mater Trans, 1996; 27A: 611[2] Kurz W, Fisher D J. Acta Metall, 1981; 29: 11[3] Somboonsuk K, Trivedi R. Acta Metall, 1985; 33: 1051[4] Huang W, Geng X, Zhou Y. J Cryst Growth, 1993; 134: 105[5] Rappaz M, Gandin C A. Acta Metall, 1993; 41: 345[6] Gandin C A, Rappaz M, Tintillier R. Metall Mater Trans, 1994; 25A: 629[7] Nastac L. Acta Mater, 1999; 47: 4253[8] Beltran–Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471[9] WangW, Lee P D, McLean M. Acta Mater, 2003; 51: 2971[10] Zhu M F, Hong C P. ISIJ Int, 2001; 41: 436[11] Liu Y, Xu Q Y, Liu B C. Tsinghua Sci Technol, 2006; 11: 495[12] Shan B W, Huang W D, Lin X, Wei L. Acta Metall Sin, 2008; 44: 1042(单博炜, 黄卫东, 林鑫, 魏雷. 金属学报, 2008; 44: 1042)[13] Esaka H. PhD thesis, Ecole Polytechnique Federale de Lausanne, Switzerland, 1986[14] Hansen G, Liu S, Lu S Z, Hellawell A. J Cryst Growth, 2002; 234: 731[15] Bennon W D, Incropera F P. Metall Mater Trans, 1987; 18B: 611[16] Feng Y H, Nie H, Zhang X X. J Eng Thermoph, 2008; 29: 301(冯妍会, 聂红, 张欣欣. 工程热物理学报, 2008; 29: 301)[17] Yu J, Xu Q Y, Cui K, Liu B C. Acta Metall Sin, 2007; 43: 731 (于 靖, 许庆彦, 崔锴, 柳百成. 金属学报, 2007; 43: 731)[18] Li B, Xu Q Y, Pan D, Liu B C, Xiong Y C, Zhou Y J, Hong R Z. Acta Metall Sin, 2008; 44: 243(李 斌, 许庆彦, 潘冬, 柳百成, 熊艳才, 周永江, 洪润洲. 金属学报, 2008; 44: 243)[19] Chen J, Zhu M F, Sun G X. Acta Metall Sin, 2005; 41: 799(陈晋, 朱鸣芳, 孙国雄. 金属学报, 2005; 41: 799)[20] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823[21] Walton D, Chalmers B. Trans Metall Soc AIME, 1959; 215: 447[22] Langer J S, M¨uller–Krumbhaar H. Acta Metall, 1978; 26: 1681 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|