Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (1): 7-16    DOI: 10.3724/SP.J.1037.2010.00313
论文 Current Issue | Archive | Adv Search |
MODELING AND SIMULATION ON MICROPOROSITY FORMED DURING SQUEEZE CASTING OF ALUMINUM ALLOY
HAN Zhiqiang1),  LI Jinxi1),  YANG Wen1),  ZHAO Haidong2),  LIU Baicheng1,3)
1) Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2) School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 
3) State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University,  Beijing 100084
Download:  PDF(1384KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A mathematical model for simulating the microporosity in squeeze casting of aluminum alloy has been developed, in which the heat transfer, solidification shrinkage, feeding flow, pressure transfer, and hydrogen conservation were taken into account. The shrinkage induced flow and the pressure drop in the mushy zone were calculated by solving continuity and momentum equations. A mechanical model was solved for obtaining the pressure transferred into the central area of the casting. By coupling the pressure drop with the pressure transferred into the central area, the pressure distribution in the mushy zone was calculated. Based on the hydrogen conservation equation, the microporosity volume fraction was calculated by referring to the pressure value in the mushy zone. The squeeze casting processes of aluminum alloy under different process conditions were simulated and the simulation results were compared with experimental results. It was shown that the simulation results agree well with the experimental results, and the increases in applied pressure and mould temperature tend to reduce the microporosity in the castings.
Key words:  aluminum alloy      squeeze casting      microporosity      modeling and simulation     
Received:  30 June 2010     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50675113 and 50875143)

Corresponding Authors:  HAN Zhiqiang     E-mail:  lijinxi05@gmail.com

Cite this article: 

HAN Zhiqiang LI Jinxi YANG Wen ZHAO Haidong LIU Baicheng. MODELING AND SIMULATION ON MICROPOROSITY FORMED DURING SQUEEZE CASTING OF ALUMINUM ALLOY. Acta Metall Sin, 2011, 47(1): 7-16.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00313     OR     https://www.ams.org.cn/EN/Y2011/V47/I1/7

[1] Ghomashchi M R, Vikhrov A. J Mater Process Technol, 2000; 101: 1

[2] Qi P X. Spec Cast Nonferrous Alloys, 1998; 18(4): 32

(齐丕骧. 特种铸造及有色合金, 1998; 18(4): 32)

[3] Luo S J, Chen B G, Qi P X. Liquid Forging and Squeeze Casting Technology. Beijing: Chemical Industry Press, 2007: 1

(罗守靖, 陈炳光, 齐丕骧. 液态模锻与挤压铸造技术. 北京: 化学工业出版社, 2007: 1)

[4] Major J F. AFS Trans, 1998; 105: 901

[5] Samuel A M, Samuel F H. Metall Mater Trans, 1995; 26A: 2359

[6] Lee C D. Mater Sci Eng, 2007; A464: 249

[7] Lee P D, Chirazi A, See D. J Light Met, 2001; (1): 15

[8] Stefanescu D M. Int J Cast Met Res, 2005; 18(3): 129

[9] Gui Z L, Dai T, Zhu M F. Spec Cast Nonferrous Alloys, 2007; 27: 766

(桂仲林, 戴挺, 朱鸣芳. 特种铸造及有色合金, 2007; 27: 766)

[10] Kubo K, Pehlke R D. Metall Trans, 1985; 16B: 359

[11] Poirier D R, Yeum K, Maples A L. Metall Trans, 1987; 18A: 1979

[12] Shivkumar S, Apelian D, Zou J. AFS Trans, 1990; 98: 897

[13] Sabau A S, Viswanathan S. Metall Mater Trans, 2002; 33B: 243

[14] Pequet C H, Gremaud M, Rappaz M. Metall Mater Trans, 2002; 33A: 2095

[15] Zhao H D, Wu C Z, Li Y Y, Ohnaka I. Acta Metall Sin, 2008; 44: 1340

(赵海东, 吴朝忠, 李元元, 大中逸雄. 金属学报, 2008; 44: 1340)

[16] Atwood R C, Sridhar S, Zhang W, Lee P D. Acta Mater, 2000; 48: 405

[17] Lee P D, Chirazi A, Atwood R C, Wang W. Mater Sci Eng, 2004; A365: 57

[18] Wang J S, Lee P D. Int J Cast Met Res, 2007; 20(3): 151

[19] Backer G, Wang Q G. Metall Mater Trans, 2007; 38B: 533

[20] Carlson K D, Lin Z P, Beckermann C. Metall Mater Trans, 2007; 38B: 541

[21] Han Z Q, Zhu W, Liu B C. Acta Metall Sin, 2009; 45: 356

(韩志强, 朱维, 柳百成. 金属学报, 2009 45: 356)

[22] Zhu W, Han Z Q, Liu B C. Acta Metall Sin, 2009 45: 363

(朱维, 韩志强, 柳百成. 金属学报, 2009; 45: 363)

[23] Anyalebechi P N. Acta Metall, 1995; 33: 1209

[24] Lewis R W, Han Z Q, Gethin D T. C R Mec, 2007: 335: 287

[25] Yang W, Li J X, Han Z Q, Zhao H D, Liu B C. Spec Cast Nonferrous Alloys, 2010; 30: 54

(杨文, 李金玺, 韩志强, 赵海东, 柳百成. 特种铸造及有色合金, 2010; 30: 54)
[1] WANG Li,DONG Chaofang,ZHANG Dawei,SUN Xiaoguang,Chowwanonthapunya Thee,MAN Cheng,XIAO Kui,LI Xiaogang. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. 金属学报, 2020, 56(1): 119-128.
[2] Zhiming GAO, Wanqi JIE, Yongqin LIU, Haijun LUO. Formation Mechanism and Coupling Prediction of Microporosity and Inverse Segregation: A Review[J]. 金属学报, 2018, 54(5): 717-726.
[3] Yingkai SHAO, Yuxi WANG, Zhibin YANG, Chunyuan SHI. Plasma-MIG Hybrid Welding Hot Cracking Susceptibility of 7075 Aluminum Alloy Based on Optimum of Weld Penetration[J]. 金属学报, 2018, 54(4): 547-556.
[4] Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. 金属学报, 2018, 54(3): 435-442.
[5] Yi MEI, Quanlong SUN, Lihua YU, Chuanrong WANG, Huaqiang XIAO. Grain Size Prediction of Aluminum Alloy Dies Castings Based on GA-ELM[J]. 金属学报, 2017, 53(9): 1125-1132.
[6] Yanli LIN, Zhubin HE, Guannan CHU, Yongda YAN. A New Method for Directly Testing the Mechanical Properties of Anisotropic Materials in Bi-Axial Stress State by Tube Bulging Test[J]. 金属学报, 2017, 53(9): 1101-1109.
[7] Junzhou CHEN, Liangxing LV, Liang ZHEN, Shenglong DAI. Quantitative Characterization on the Precipitation of AA 7055 Aluminum Alloy by SAXS[J]. 金属学报, 2017, 53(8): 897-906.
[8] Jianhai YANG,Yuxiang ZHANG,Liling GE,Xiao CHENG,Jiazhao CHEN,Yang GAO. Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints[J]. 金属学报, 2017, 53(7): 842-850.
[9] Mingming MA,Feng LIAN,Luping ZANG,Qiukuan XIANG,Huichen ZHANG. Effect of Dimple Depth on Friction Properties of Aluminum Alloy Under Different Lubrication Conditions[J]. 金属学报, 2017, 53(4): 406-414.
[10] Guannan CHU,Yanli LIN,Weining SONG,Lin ZHANG. Forming Limit of FSW Aluminum Alloy Blank Based on a New Constitutive Model[J]. 金属学报, 2017, 53(1): 114-122.
[11] Jinrong ZUO,Longgang HOU,Jintao SHI,Hua CUI,Linzhong ZHUANG,Jishan ZHANG. PRECIPITATES AND THE EVOLUTION OF GRAIN STRUCTURES DURING DOUBLE-STEP ROLLING OF HIGH-STRENGTH ALUMINUM ALLOYAND RELATED PROPERTIES[J]. 金属学报, 2016, 52(9): 1105-1114.
[12] Zheng LIU,Lina XU,Zhaofu YU,Yangzheng CHEN. RESEARCH ON THE MORPHOLOGY AND FRACTALDIMENSION OF PRIMARY PHASE IN SEMISOLIDA356-La ALUMINUM ALLOY BY ELECTRO-MAGNETIC STIRRING[J]. 金属学报, 2016, 52(6): 698-706.
[13] Xianfei DING,Dongfang LIU,Yunrong ZHENG,Qiang FENG. EFFECT OF B MICRO-ALLOYING ON MICRO-POROSITIES IN AS-CAST HK40 ALLOYS[J]. 金属学报, 2015, 51(9): 1121-1128.
[14] Lei ZHAO,Hongxiang JIANG,Tauseef AHMAD,Jiuzhou ZHAO. STUDY OF SOLIDIFICATION FOR GAS-ATOMIZED DROPLET OF Cu-Co-Fe ALLOY[J]. 金属学报, 2015, 51(7): 883-888.
[15] Rui CHEN, Qingyan XU, Qinfang WU, Huiting GUO, Baicheng LIU. NUCLEATION MODEL AND DENDRITE GROWTH SIMULATION IN SOLIDIFICATON PROCESS OF Al-7Si-Mg ALLOY[J]. 金属学报, 2015, 51(6): 733-744.
No Suggested Reading articles found!