Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (1): 1-6    DOI: 10.3724/SP.J.1037.2010.00231
论文 Current Issue | Archive | Adv Search |
STRENTHENING MECHANISM OF MODULATED STRUCTURE INITIATED BY SPINODAL DECOMPOSITION
XU Zuyao (T.Y.HSU)
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
Cite this article: 

XU Zuyao (T.Y.HSU). STRENTHENING MECHANISM OF MODULATED STRUCTURE INITIATED BY SPINODAL DECOMPOSITION. Acta Metall Sin, 2011, 47(1): 1-6.

Download:  PDF(1143KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Through reviewing of a limited number of literatures regarding strengthening mechanism of modulated structure initiated by spinodal decomposition, it is found that the yield strength of aged alloy is mainly dependent on stress field built by the composition different between two precipitate phases which can be characterized by difference between lattice parameter Δa and is independent on modulate wave length and volume fraction of precipitate phase. However, in the ageing courses, the changes in yield stress and Δa did not show a linear relationship. The present author considers that this may be attributed to the local destruction of periodicity of modulated structure, causing change in stress field during ageing and suggests a yield stress equation: σc=MBΔa/a, in which M denotes a sum factor including Taylor (or Schmidt) factor and elastic constants, B, a factor represent the response of local stress field changed the function of Δa/a, Δa, the difference between lattice parameters of two precipitate phases and a, the average lattice parameter. This equation and the B value need to be confirmed and estimated.
Key words:  spinodal decomposition      modulated structure      strengthening mechanism     
Received:  13 May 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00231     OR     https://www.ams.org.cn/EN/Y2011/V47/I1/1

[1] Xu Z Y. Trans Mater Heat Treat, 2010; 31(1): 3

(徐祖耀. 材料热处理学报, 2010; 31(1): 3)

[2] Cahn J W. Acta Metall, 1963; 11: 1275

[3] Kato M, Mori T, Schwarrtz L H. Acta Metall, 1980; 28: 285

[4] Ditchek B, Schwartz L H. Ann Rev Mater Sci, 1979; 9: 219

[5] Hillert M, Cohen M, Averbach B L. Acta Metall, 1961; 9: 536

[6] Dahlgren S D. Metall Trans, 1977; 8A: 347

[7] Bradley A J. Proc Phys Soc, 1940; 52: 80

[8] Hargreaves M E. Acta Crystallogr, 1951; 4: 301

[9] Dahlgren S D. PhD Thesis, UCRL Report No.16846, University of California, Berkeley, Calif., 1966

[10] Dahlgren S D. Metall Trans, 1976; 7A: 1661

[11] Butler E P, Thomas G. Acta Metall, 1970; 18: 347

[12] Livak R J, Thomas G. Acta Metall, 1971; 19: 497

[13] Mott N F, Nabarro F R N. Proc Phys Soc, 1940; 52: 86

[14] Hirsch P B, Kelly A. Philos Mag, 1965; 12: 881

[15] Dillamore J L, Smallman R E, Roberts W J. Philos Mag, 1964; 9: 517

[16] Carpenter R W. Acta Metall, 1967; 15: 1297

[17] Fleischer R L. Electron Microscopy and Strength of Crystals, Hoboken: Wiley, 1963: 980

[18] Miyazaki T, Yajima E, Suga H. Trans JIM, 1971; 12: 119

[19] Ditchek B. PhD Thesis, Northwestern University, Evanston, IL., USA, 1978

[20] Ditchek B, Schwartz L H. Proc 4th Int Conf Strength of Metals and Alloys, 1976; 3: 1319

[21] Hanai Y, Miyazaki T, Mori H. J Mater Sci, 1979; 14: 599
[1] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[2] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[3] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[4] WANG Hongwei, HE Zhufeng, JIA Nan. Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure[J]. 金属学报, 2021, 57(5): 632-640.
[5] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[6] WEN Bin, TIAN Yongjun. Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials[J]. 金属学报, 2021, 57(11): 1380-1395.
[7] LUAN Xiaosheng, LIANG Zhiqiang, ZHAO Wenxiang, SHI Guihong, LI Hongwei, LIU Xinli, ZHU Guorong, WANG Xibin. Strengthening Mechanism of 45CrNiMoVA Steel by Pulse Magnetic Treatment[J]. 金属学报, 2021, 57(10): 1272-1280.
[8] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[9] XU Shuai, SUN Xinjun, LIANG Xiaokai, LIU Jun, YONG Qilong. Effect of Hot Rolling Deformation on Microstructure and Mechanical Properties of a High-Ti Wear-Resistant Steel[J]. 金属学报, 2020, 56(12): 1581-1591.
[10] Baojun ZHAO,Yuhong ZHAO,Yuanyang SUN,Wenkui YANG,Hua HOU. Effect of Mn Composition on the Nanometer Cu-Rich Phase of Fe-Cu-Mn Alloy by Phase Field Method[J]. 金属学报, 2019, 55(5): 593-600.
[11] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[12] QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. 金属学报, 2019, 55(12): 1537-1543.
[13] Jianxue LIU, Wenjun XI, Neng LI, Shujie LI. Effect of Interfacial Energy on Distribution of Nanoparticle in the Melt During the Preparation of Fe-Based ODS Alloys by Thermite Reaction[J]. 金属学报, 2017, 53(8): 1011-1017.
[14] Yajun HUI, Hui PAN, Kun LIU, Wenyuan LI, Yang YU, Bin CHEN, Yang CUI. Strengthening Mechanism of 600 MPa Grade Nb-Ti Microalloyed High Formability Crossbeam Steel[J]. 金属学报, 2017, 53(8): 937-946.
[15] Kechang HAN,Yiqi LIU,Guoqiang LIN,Chuang DONG,Kaiping TAI,Xin JIANG. STUDY ON ATOMIC-SCALE STRENGTHENING MECHANISM OF TRANSITION-METAL NITRIDE MNx (M=Ti, Zr, Hf) FILMS WITHIN WIDE COMPOSITION RANGES[J]. 金属学报, 2016, 52(12): 1601-1609.
No Suggested Reading articles found!