Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (9): 1121-1127    DOI: 10.3724/SP.J.1037.2010.00207
论文 Current Issue | Archive | Adv Search |
EFFECTS OF DOUBLE EXTRUSION ON THE MICROSTRUCTURE AND TENSILE PROPERTY OF THE PM PROCESSED SiCp/2009Al COMPOSITES
LIU Zhenyu, WANG Quanzhao, XIAO Bolv, MA Zongyi, LIU Yue
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LIU Zhenyu, WANG Quanzhao, XIAO Bolv, MA Zongyi, LIU Yue. EFFECTS OF DOUBLE EXTRUSION ON THE MICROSTRUCTURE AND TENSILE PROPERTY OF THE PM PROCESSED SiCp/2009Al COMPOSITES. Acta Metall Sin, 2010, 46(9): 1121-1127.

Download:  PDF(815KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Powder metallurgy (PM), as an important method of fabricating SiC particle reinforced aluminum matrix (SiCp/Al) composites, has advantages in obtaining good interfacial bonding and enhancing tensile strength over casting or infiltrating method. The primary process of the PM method involves mixing, compaction and subsequent secondary plastic deformation. Especially, secondary plastic deformation is an important process to destroy the oxidation film on the Al particle surfaces and enhance Al-SiC bonding. However, the incorporation of the SiC particles restricts plastic flow ability of the composite and makes it difficult to be subjected to heavy single-step plastic deformation, such as single hot extrusion, hot rolling or hot forging. Instead, multi-step deformation is a critical processing approach for the SiCp/Al composites with low deformability. However, the previous attentions were mostly focused on single-step processing, multi--step plastic deformation of the SiCp/Al composites was seldom discussed. In this paper, 20%SiCp/2009Al (volume fraction) composite was fabricated using a common PM method and the effects of double extrusion on the microstructure and tensile property of the composite were investigated. It is indicated that the double extrusion could refine the SiCp size, align the SiCp and increase the aspect ratio of the SiCp, but did not exert critical effects of the grain size and <111> texture of the matrix. However, the average distance between the SiCp along the extrusion direction increased after the double extrusion, more easily inducing a SiCp-poor band which aligned approximately perpendicularly to the extrusion direction. This resulted in a decrease in the strength and an increase in the elongation along the extrusion direction.

Key words:  powder metallurgy      composite      aluminum alloy      double extrusion      SiCp-poor band     
Received:  30 April 2010     
ZTFLH: 

TF124

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00207     OR     https://www.ams.org.cn/EN/Y2010/V46/I9/1121

[1] Ibrahim I A, Mohamed F A, Lavernia E J. J Mater Sci, 1991; 26: 1137
[2] Torralba J M, da Costa C E, Velasco F. J Mater Proc Technol, 2003; 133: 203
[3] Ralph B, Yuen H C, Lee W B. J Mater Proc Technol, 1997; 63: 339
[4] Miracle D B. Compos Sci Technol, 2005; 65: 2526
[5] Liu Y B, Lim S C, Lu L, Lai M O. J Mater Sci, 1994; 29: 1999
[6] Cocen U, Onel K. Compos Sci Technol, 2002; 62: 275
[7] Carvalho M H, Marcelo T, Carvalhinhos H, Sellars C M. J Mater Sci, 1992; 27: 2101
[8] Sun X W, Zeng S M, Chen Z Q, Cheng N P. J Southwest China Norm Univ (Nat Sci Ed), 2005; 30: 888
(孙旭炜, 曾苏民, 陈志谦, 程南璞. 中南大学学报(自然科学版), 2005; 30: 888)
[9] Hanada K, Murakoshi Y, Negishi H, Sano T. J Mater Proc Technol, 1997; 63: 405
[10] Davies C H J, Chen W C, Hawbolt E B, Samarasekera I V, Brimacombe J K. Scr Metall Mater, 1995; 32: 309
[11] Davies C H J, Chen W C, Lloyd D, Hawbolt E B, Samarasekera I V, Brimacombe J K. Metal Mater Trans, 1996; 27A: 4113
[12] Rahmani F R, Akhlaghi F. J Mater Proc Technol, 2007; 187–188: 433
[13] Yang N, Boselli J, Gregson P, Sinclair I. Mater Sci Technol, 2000; 16: 797
[14] Yang N, Boselli J, Sinclair I. J Microscopy, 2001; 201: 189
[15] Boselli J, Gregson P J, Sinclair I. Mater Sci Eng, 2004; A379: 72
[16] Tham L M, Gupta M, Cheng L. Mater Sci Eng, 2002; A326: 355
[17] Humphreys J F, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., UK: Elsevier Ltd, 2004: 427
[18] Mitra R, Mahajan Y. Bull Mater Sci, 1995; 18: 405
[19] Flom Y, Arsenault R J. Acta Metall, 1989; 37: 2413
[20] Milan M, Bowen P. J Mater Eng Perform, 2004; 13: 775
[21] Nardone V C, Prewo K M. Scr Metall, 1986; 20: 43
[22] Liu Z Y, Wang Q Z, Xiao B L, Ma Z Y, Liu Y. Mater Sci Eng, 2010, doi:10.1016/j.msea.2010.05.006

[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[3] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[4] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[5] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[6] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[7] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[8] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[9] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[10] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[11] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[12] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[13] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[14] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[15] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
No Suggested Reading articles found!