Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (10): 1192-1199    DOI: 10.3724/SP.J.1037.2010.00177
论文 Current Issue | Archive | Adv Search |
EFFECT OF COOLING RATE ON THE FORMATION OF 14H–LPSO STRUCTURE IN GWZ1032K ALLOY
ZHANG Song1,2, YUAN Guangyin1,2, LU Chen1,2, DING Wenjiang1,2
1. Light Alloy Net Forming National Engineering Research Center, School of Materials Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200240
2, The State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200240
Cite this article: 

ZHANG Song YUAN Guangyin LU Chen DING Wenjiang. EFFECT OF COOLING RATE ON THE FORMATION OF 14H–LPSO STRUCTURE IN GWZ1032K ALLOY. Acta Metall Sin, 2010, 46(10): 1192-1199.

Download:  PDF(4319KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Mg–10Gd–3Y–1.8Zn–0.5Zr (mass fraction, %) (GWZ1032K) alloys were fabricated by permanent mold casting and slow solidification with different cooling rates. The microstructures of the GWZ1032K alloys with different cooling rates were investigated by SEM, TEM and XRD. Two kinds of LPSO structure were observed, include lamellar 14H–LPSO structure in the grain interior and χ phase at the grain boundaries. Lamellar 14H–LPSO structure in α–Mg matrix propagated in the matrix with the decease of solidification rate, and filled the whole grain in the alloy solidified at 0.005 ℃/s. The second phase in the alloys also changed with deceasing the solidification rates, there are (Mg, Zn)3RE compounds only when solidification rate is 5 ℃/s, (Mg, Zn)3RE compounds and 14H–LPSO structured  phase when solidification rates are 0.5 and 0.1 ℃/s, and 14H–LPSO structured χ phase only when solidification rates are 0.01 and 0.005 ℃/s. It was detected that (Mg, Zn)3RE compounds and χ phase existed simultaneously at the grain boundaries in the alloys at solidification rates of 0.5 ℃/s and 0.1℃/s, and the orientation relationship between them was determined to be [110] χphase//[223](Mg,Zn)3RE and ∠g(001)χ phase g(110) (Mg, Zn)3RE=8.4°.
Key words:  14H-LPSO structure      solidification rate      Mg-Gd-Y-Zn alloy      &chi      phase     
Received:  14 April 2010     
Fund: 

Supported by Science and Technology Commission of Shanghai Municipality (No.08JC141412200), Program for New Century Excellent Talents in University (No.NCET–07–0554), and Open Research Fund Program by Jiangsu Key Laboratory of Advanced Metallic Materials (No.AMM200903)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00177     OR     https://www.ams.org.cn/EN/Y2010/V46/I10/1192

[1] Polmear I J. Mater Trans, 1996; 37: 12 [2] Froes F H, Eliezer D, Aghion E. JOM, 1998; 50: 30 [3] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Mater Trans, 2001; 42: 1172 [4] Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J. J Mater Res, 2001; 16: 1894 [5] Homma T, Kunito N, Kamado S. Scr Mater, 2009; 61: 644 [6] Kawamura Y, kasahara Y, Izumi S, Yamasaki M. Scr Mater, 2006; 55: 453 [7] YamasakiM, SasakiM, NishijimaM, Hiraga K, Kawamura Y. Acta Mater, 2007; 55: 6798 [8] Yamasaki M, Anan T, Yoshimoto S, Kawamura Y. Scr Mater, 2005; 53: 799 [9] Honma T, Ohkubo T, Kamado S, Hono K. Acta Mater, 2007; 55: 4137 [10] Wu Y J, Zeng X Q, Lin D L, Peng L M, Ding W J. J Alloys Compd, 2009; 477: 193 [11] Wu Y J, Lin D L, Zeng X Q, Peng L M, Ding W J. J Mater Sci, 2009; 44: 1607 [12] He S M, Zeng X Q, Peng L M, Guo X W, Chang J W, Ding W J. Mater Sci Forum, 2007; 101: 546 [13] Perminov V P. Powder Metall Met Ceram, 1967; 6: 409 [14] Liu X H, Johnson W L. J Appl Phys, 1995; 78: 6514 [15] Zhu Y M, Morton A J, Nie J F. Acta Mater, 2010; 58: 2936 [16] Itoi T, Seimiya T, Kawamura Y, Hirohashi M. Scr Mater, 2004; 51: 107 [17] Ping D H, Hono K, Kawamura Y, Inoue A. Philos Mag Lett, 2002; 82: 543 [18] Ping D H, Hono K, Nie J F. Scr Mater, 2003; 48: 1017 [19] Datta A, Waghmare U V, Ramamurty U. Acta Mater, 2009; 11: 2531 [20] Ding W J, Wu Y J, Peng L M, Zeng X Q, Yuan GY. J Mater Res, 2009; 24: 1842
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[6] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[7] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[8] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[9] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[10] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[11] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[12] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[13] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[14] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[15] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
No Suggested Reading articles found!