Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (8): 897-906    DOI: 10.3724/SP.J.1037.2010.00108
论文 Current Issue | Archive | Adv Search |
EFFECTS OF Ru AND Cr ON γ/γ' MICROSTRUCTURAL EVOLUTION OF Ni–BASED SINGLE CRYSTAL SUPERALLOYS DURING HEAT TREATMENT
CHEN Jingyang 1, ZHAO Bin 1, FENG Qiang 1,2, CAO Lamei 3, SUN Zuqing 1
1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083
2. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
3. National Key Laboratory of Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

CHEN Jingyang ZHAO Bin FENG Qiang CAO Lamei SUN Zuqing. EFFECTS OF Ru AND Cr ON γ/γ' MICROSTRUCTURAL EVOLUTION OF Ni–BASED SINGLE CRYSTAL SUPERALLOYS DURING HEAT TREATMENT. Acta Metall Sin, 2010, 46(8): 897-906.

Download:  PDF(3641KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influences of Ru and Cr as well as their interaction on the elemental partitioning ratio and microstructural evolution have been investigated in six Ni–based single crystal experimental superalloys with various levels of Ru (0—5.1%) and Cr (0—5.7%) additions (mass fraction). The results indicate that γ′ precipitates are nearly spherical in the dendrite core of the base alloy (Ru and Cr–free), which has a low Re partitioning ratio and near zero lattice misfit, after aging treatment at 1100 ℃ for 8 h. The lattice misfit and Re partitioning ratio increase slightly and the γ′ precipitates change to be more cuboidal with the addition of 5.1%Ru in both Cr–free and Cr–containing alloys. Meanwhile, the Re partitioning ratio increases significantly with increasing the Cr content in both Ru–free and Ru–containing alloys, which in turn results in more negative lattice misfit and more cuboidal γ′ precipitates. After long–term thermal exposure at 1100 ℃, the nearly spherical γ′ precipitates with near zero lattice misfit in the alloy have no change in morphology, and are coarsened after a longer exposure time, while the alloy with intermediate γ′ precipitates and low lattice misfit is coarsened more severely. However, a nearly–rafted structure tend to form in the alloy with nearly cuboidal′ precipitates and intermediate misfit after heat treatment for 800 h. The time to form the rafted structure is significantly reduced in the alloys containing both Ru and Cr with high Re partitioning ratio and high lattice misfit as well as cuboidal or rectangular γ′ precipitates. The alloy containing high Ru and intermediate Cr exhibits a rafted trend after heat treatment for 200 h while the rectangular γ′ precipitates are rafted after heat treatment for only 50 h in the alloy containing high levels of Ru and Cr additions with the highest lattice misfit.

Key words:  superalloys      Ru      Cr      γ&prime      morphology      elemental partitioning ratio      lattice misfit     
Received:  04 March 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.50671015), Program for New Century Excellent Talents in University, Chinese Ministry of Education (No.NCET–06–0079), High Technology Research and Development Program of China (No.2007AA03A225) and National Basic Research Program of China (No.2010CB631201)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00108     OR     https://www.ams.org.cn/EN/Y2010/V46/I8/897

[1]Hu Z Q, Liu L R, Jin T, Sun X F. Aerial Engine, 2005; 31(3): 1 (胡壮麒, 刘丽荣, 金涛, 孙晓峰. 航空发动机, 2005; 31(3): 1) [2]Pollock T M, Tin S. J. Propul. Power., 2006; 22(2): 361 [3]Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A, eds., Superalloys 1996, Champion, PA: TMS, 1996: 27 [4]Walston S, Cetel A, MacKay R, O'Hara K, Duhl D, Dreshfield R. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 15 [5]Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J, eds., Superalloys 2000, Champion, PA: TMS, 2000: 737 [6]Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 35 [7]Feng Q, Nandy T K, Tin S, Pollock T M. Acta Mater, 2003; 51(1): 269 [8]O'Hara K S, Walston W S, Ross E W, Darolia R. US Pat, 5482789, 1996 [9]Hobbs R A, Zhang L, Rae C M F, Tin S. Metall Mater Trans A, 2008; 39(5): 1014 [10]Yeh A C, Rae C M F, Tin S. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 677 [11]Zhang J X, Murakumo T, Harada H, Koizumi Y, Kobayashi T. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 189 [12]Zheng Y R, Wang X P, Dong J X, Han Y F, Murakami H, Harada H. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J, eds., Superalloys 2000, Champion, PA: TMS, 2000: 305 [13]Zheng L, Gu C Q, Zheng Y R. Mater Eng, 2002; (5): 3 (郑亮, 谷臣清, 郑运荣. 材料工程. 2002; (5): 3) [14]Ren Y L, Jin T, Guan H R, Hu Z Q. Mater Mech Eng, 2004; (5): 10 (任英磊, 金涛, 管恒荣, 胡壮麒. 机械工程材料. 2004; 28(3): 10) [15]Wang W Z, Jin T, Liu J L, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, A, 2008; 479(1-2): 148 [16]F?hrmann M, Fratzl P, Paris O, Fahrmann E, Johnson W C. Acta Metall Mater, 1995; 43(3): 1007 [17]Wang T, Sheng G, Liu Z K, Chen L Q. Acta Mater, 2008; 56(19): 5544 [18]Ren H L. Technology of Metallographic Experiment. Beijing: Metallurgy Industry Press, 2006: 159 (任怀亮. 金相实验技术. 北京: 冶金工业出版社, 1986: 159) [19]Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19(1-2): 35 [20]Wagner C. Z. Elektrochem, 1961; 65(7-8): 581 [21]Hobbs R A, Brewster G J, Rae C M F, Tin S. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A, eds., Superalloys 2008, Champion, PA: TMS, 2008: 171 [22]Pollock T M, Argon A S. Acta Metall Mater, 1994; 42(6): 1859 [23]Smith J, PhD Thesis, University of Illinois at Urbana-Champaign, 1987 [24]Huang W, Chang Y A. Mater Sci Eng A, 1999; 259(1): 110 [25]Dreshfield R L, Thomas K J. NASA Report TM-2005-213288. 2005 [26]Carroll L J, Feng Q, Mansfield J F, Pollock T M. Mater Sci Eng A, 2007; 457(1-2): 292 [27]Ofori A P, Humphreys C J, Tin S, Jones C N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 787 [28]Reed R C, Yeh A C, Tin S, Babu S S, Miller M K. Scripta Mater, 2004; 51(4): 327 [29]Volek A, Pyczak F, Singer R F, Mughrabi H. Scripta Mater, 2005; 52(2): 141 [30]Gale W F, Totemeir T C, Smithells C J. Smithells Metals Reference Book. 8th ed. Oxford: Butterworth-Heinemann, 2004: 4-44 [31]Carroll L J, Feng Q, Pollock T M. Metall Mater Trans A, 2008; 39(6): 1290 [32]Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans A, 2006; 37(10): 2927 [33]Chen J Y, Zhao B, Feng Q, Cao L M. In: Joseph R, Omer D, Donna B, Shiela W, eds., San Francisco, CA: TMS, 2009: 233
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[9] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[10] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[11] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[12] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[13] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[14] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[15] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
No Suggested Reading articles found!