|
|
EFFECTS OF Ru AND Cr ON γ/γ' MICROSTRUCTURAL EVOLUTION OF Ni–BASED SINGLE CRYSTAL SUPERALLOYS DURING HEAT TREATMENT |
CHEN Jingyang 1, ZHAO Bin 1, FENG Qiang 1,2, CAO Lamei 3, SUN Zuqing 1 |
1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083
2. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
3. National Key Laboratory of Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095 |
|
Cite this article:
CHEN Jingyang ZHAO Bin FENG Qiang CAO Lamei SUN Zuqing. EFFECTS OF Ru AND Cr ON γ/γ' MICROSTRUCTURAL EVOLUTION OF Ni–BASED SINGLE CRYSTAL SUPERALLOYS DURING HEAT TREATMENT. Acta Metall Sin, 2010, 46(8): 897-906.
|
Abstract The influences of Ru and Cr as well as their interaction on the elemental partitioning ratio and microstructural evolution have been investigated in six Ni–based single crystal experimental superalloys with various levels of Ru (0—5.1%) and Cr (0—5.7%) additions (mass fraction). The results indicate that γ′ precipitates are nearly spherical in the dendrite core of the base alloy (Ru and Cr–free), which has a low Re partitioning ratio and near zero lattice misfit, after aging treatment at 1100 ℃ for 8 h. The lattice misfit and Re partitioning ratio increase slightly and the γ′ precipitates change to be more cuboidal with the addition of 5.1%Ru in both Cr–free and Cr–containing alloys. Meanwhile, the Re partitioning ratio increases significantly with increasing the Cr content in both Ru–free and Ru–containing alloys, which in turn results in more negative lattice misfit and more cuboidal γ′ precipitates. After long–term thermal exposure at 1100 ℃, the nearly spherical γ′ precipitates with near zero lattice misfit in the alloy have no change in morphology, and are coarsened after a longer exposure time, while the alloy with intermediate γ′ precipitates and low lattice misfit is coarsened more severely. However, a nearly–rafted structure tend to form in the alloy with nearly cuboidal′ precipitates and intermediate misfit after heat treatment for 800 h. The time to form the rafted structure is significantly reduced in the alloys containing both Ru and Cr with high Re partitioning ratio and high lattice misfit as well as cuboidal or rectangular γ′ precipitates. The alloy containing high Ru and intermediate Cr exhibits a rafted trend after heat treatment for 200 h while the rectangular γ′ precipitates are rafted after heat treatment for only 50 h in the alloy containing high levels of Ru and Cr additions with the highest lattice misfit.
|
Received: 04 March 2010
|
Fund: Supported by National Natural Science Foundation of China (No.50671015), Program for New Century Excellent Talents in University, Chinese Ministry of Education (No.NCET–06–0079), High Technology Research and Development Program of China (No.2007AA03A225) and National Basic Research Program of China (No.2010CB631201) |
[1]Hu Z Q, Liu L R, Jin T, Sun X F. Aerial Engine, 2005; 31(3): 1
(胡壮麒, 刘丽荣, 金涛, 孙晓峰. 航空发动机, 2005; 31(3): 1)
[2]Pollock T M, Tin S. J. Propul. Power., 2006; 22(2): 361
[3]Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A, eds., Superalloys 1996, Champion, PA: TMS, 1996: 27
[4]Walston S, Cetel A, MacKay R, O'Hara K, Duhl D, Dreshfield R. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 15
[5]Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J, eds., Superalloys 2000, Champion, PA: TMS, 2000: 737
[6]Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 35
[7]Feng Q, Nandy T K, Tin S, Pollock T M. Acta Mater, 2003; 51(1): 269
[8]O'Hara K S, Walston W S, Ross E W, Darolia R. US Pat, 5482789, 1996
[9]Hobbs R A, Zhang L, Rae C M F, Tin S. Metall Mater Trans A, 2008; 39(5): 1014
[10]Yeh A C, Rae C M F, Tin S. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 677
[11]Zhang J X, Murakumo T, Harada H, Koizumi Y, Kobayashi T. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 189
[12]Zheng Y R, Wang X P, Dong J X, Han Y F, Murakami H, Harada H. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J, eds., Superalloys 2000, Champion, PA: TMS, 2000: 305
[13]Zheng L, Gu C Q, Zheng Y R. Mater Eng, 2002; (5): 3
(郑亮, 谷臣清, 郑运荣. 材料工程. 2002; (5): 3)
[14]Ren Y L, Jin T, Guan H R, Hu Z Q. Mater Mech Eng, 2004; (5): 10
(任英磊, 金涛, 管恒荣, 胡壮麒. 机械工程材料. 2004; 28(3): 10)
[15]Wang W Z, Jin T, Liu J L, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, A, 2008; 479(1-2): 148
[16]F?hrmann M, Fratzl P, Paris O, Fahrmann E, Johnson W C. Acta Metall Mater, 1995; 43(3): 1007
[17]Wang T, Sheng G, Liu Z K, Chen L Q. Acta Mater, 2008; 56(19): 5544
[18]Ren H L. Technology of Metallographic Experiment. Beijing: Metallurgy Industry Press, 2006: 159
(任怀亮. 金相实验技术. 北京: 冶金工业出版社, 1986: 159)
[19]Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19(1-2): 35
[20]Wagner C. Z. Elektrochem, 1961; 65(7-8): 581
[21]Hobbs R A, Brewster G J, Rae C M F, Tin S. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A, eds., Superalloys 2008, Champion, PA: TMS, 2008: 171
[22]Pollock T M, Argon A S. Acta Metall Mater, 1994; 42(6): 1859
[23]Smith J, PhD Thesis, University of Illinois at Urbana-Champaign, 1987
[24]Huang W, Chang Y A. Mater Sci Eng A, 1999; 259(1): 110
[25]Dreshfield R L, Thomas K J. NASA Report TM-2005-213288. 2005
[26]Carroll L J, Feng Q, Mansfield J F, Pollock T M. Mater Sci Eng A, 2007; 457(1-2): 292
[27]Ofori A P, Humphreys C J, Tin S, Jones C N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 787
[28]Reed R C, Yeh A C, Tin S, Babu S S, Miller M K. Scripta Mater, 2004; 51(4): 327
[29]Volek A, Pyczak F, Singer R F, Mughrabi H. Scripta Mater, 2005; 52(2): 141
[30]Gale W F, Totemeir T C, Smithells C J. Smithells Metals Reference Book. 8th ed. Oxford: Butterworth-Heinemann, 2004: 4-44
[31]Carroll L J, Feng Q, Pollock T M. Metall Mater Trans A, 2008; 39(6): 1290
[32]Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans A, 2006; 37(10): 2927
[33]Chen J Y, Zhao B, Feng Q, Cao L M. In: Joseph R, Omer D, Donna B, Shiela W, eds., San Francisco, CA: TMS, 2009: 233 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|