Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (8): 897-906    DOI: 10.3724/SP.J.1037.2010.00108
论文 Current Issue | Archive | Adv Search |
EFFECTS OF Ru AND Cr ON γ/γ' MICROSTRUCTURAL EVOLUTION OF Ni–BASED SINGLE CRYSTAL SUPERALLOYS DURING HEAT TREATMENT
CHEN Jingyang 1, ZHAO Bin 1, FENG Qiang 1,2, CAO Lamei 3, SUN Zuqing 1
1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083
2. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
3. National Key Laboratory of Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095
Download:  PDF(3641KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influences of Ru and Cr as well as their interaction on the elemental partitioning ratio and microstructural evolution have been investigated in six Ni–based single crystal experimental superalloys with various levels of Ru (0—5.1%) and Cr (0—5.7%) additions (mass fraction). The results indicate that γ′ precipitates are nearly spherical in the dendrite core of the base alloy (Ru and Cr–free), which has a low Re partitioning ratio and near zero lattice misfit, after aging treatment at 1100 ℃ for 8 h. The lattice misfit and Re partitioning ratio increase slightly and the γ′ precipitates change to be more cuboidal with the addition of 5.1%Ru in both Cr–free and Cr–containing alloys. Meanwhile, the Re partitioning ratio increases significantly with increasing the Cr content in both Ru–free and Ru–containing alloys, which in turn results in more negative lattice misfit and more cuboidal γ′ precipitates. After long–term thermal exposure at 1100 ℃, the nearly spherical γ′ precipitates with near zero lattice misfit in the alloy have no change in morphology, and are coarsened after a longer exposure time, while the alloy with intermediate γ′ precipitates and low lattice misfit is coarsened more severely. However, a nearly–rafted structure tend to form in the alloy with nearly cuboidal′ precipitates and intermediate misfit after heat treatment for 800 h. The time to form the rafted structure is significantly reduced in the alloys containing both Ru and Cr with high Re partitioning ratio and high lattice misfit as well as cuboidal or rectangular γ′ precipitates. The alloy containing high Ru and intermediate Cr exhibits a rafted trend after heat treatment for 200 h while the rectangular γ′ precipitates are rafted after heat treatment for only 50 h in the alloy containing high levels of Ru and Cr additions with the highest lattice misfit.

Key words:  superalloys      Ru      Cr      γ&prime      morphology      elemental partitioning ratio      lattice misfit     
Received:  04 March 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.50671015), Program for New Century Excellent Talents in University, Chinese Ministry of Education (No.NCET–06–0079), High Technology Research and Development Program of China (No.2007AA03A225) and National Basic Research Program of China (No.2010CB631201)

Corresponding Authors:  FENG Qiang     E-mail:  cjyustb@gmail.com

Cite this article: 

CHEN Jingyang ZHAO Bin FENG Qiang CAO Lamei SUN Zuqing. EFFECTS OF Ru AND Cr ON γ/γ' MICROSTRUCTURAL EVOLUTION OF Ni–BASED SINGLE CRYSTAL SUPERALLOYS DURING HEAT TREATMENT. Acta Metall Sin, 2010, 46(8): 897-906.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00108     OR     https://www.ams.org.cn/EN/Y2010/V46/I8/897

[1]Hu Z Q, Liu L R, Jin T, Sun X F. Aerial Engine, 2005; 31(3): 1 (胡壮麒, 刘丽荣, 金涛, 孙晓峰. 航空发动机, 2005; 31(3): 1) [2]Pollock T M, Tin S. J. Propul. Power., 2006; 22(2): 361 [3]Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A, eds., Superalloys 1996, Champion, PA: TMS, 1996: 27 [4]Walston S, Cetel A, MacKay R, O'Hara K, Duhl D, Dreshfield R. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 15 [5]Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J, eds., Superalloys 2000, Champion, PA: TMS, 2000: 737 [6]Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 35 [7]Feng Q, Nandy T K, Tin S, Pollock T M. Acta Mater, 2003; 51(1): 269 [8]O'Hara K S, Walston W S, Ross E W, Darolia R. US Pat, 5482789, 1996 [9]Hobbs R A, Zhang L, Rae C M F, Tin S. Metall Mater Trans A, 2008; 39(5): 1014 [10]Yeh A C, Rae C M F, Tin S. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 677 [11]Zhang J X, Murakumo T, Harada H, Koizumi Y, Kobayashi T. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 189 [12]Zheng Y R, Wang X P, Dong J X, Han Y F, Murakami H, Harada H. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J, eds., Superalloys 2000, Champion, PA: TMS, 2000: 305 [13]Zheng L, Gu C Q, Zheng Y R. Mater Eng, 2002; (5): 3 (郑亮, 谷臣清, 郑运荣. 材料工程. 2002; (5): 3) [14]Ren Y L, Jin T, Guan H R, Hu Z Q. Mater Mech Eng, 2004; (5): 10 (任英磊, 金涛, 管恒荣, 胡壮麒. 机械工程材料. 2004; 28(3): 10) [15]Wang W Z, Jin T, Liu J L, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, A, 2008; 479(1-2): 148 [16]F?hrmann M, Fratzl P, Paris O, Fahrmann E, Johnson W C. Acta Metall Mater, 1995; 43(3): 1007 [17]Wang T, Sheng G, Liu Z K, Chen L Q. Acta Mater, 2008; 56(19): 5544 [18]Ren H L. Technology of Metallographic Experiment. Beijing: Metallurgy Industry Press, 2006: 159 (任怀亮. 金相实验技术. 北京: 冶金工业出版社, 1986: 159) [19]Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19(1-2): 35 [20]Wagner C. Z. Elektrochem, 1961; 65(7-8): 581 [21]Hobbs R A, Brewster G J, Rae C M F, Tin S. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A, eds., Superalloys 2008, Champion, PA: TMS, 2008: 171 [22]Pollock T M, Argon A S. Acta Metall Mater, 1994; 42(6): 1859 [23]Smith J, PhD Thesis, University of Illinois at Urbana-Champaign, 1987 [24]Huang W, Chang Y A. Mater Sci Eng A, 1999; 259(1): 110 [25]Dreshfield R L, Thomas K J. NASA Report TM-2005-213288. 2005 [26]Carroll L J, Feng Q, Mansfield J F, Pollock T M. Mater Sci Eng A, 2007; 457(1-2): 292 [27]Ofori A P, Humphreys C J, Tin S, Jones C N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Champion, PA: TMS, 2004: 787 [28]Reed R C, Yeh A C, Tin S, Babu S S, Miller M K. Scripta Mater, 2004; 51(4): 327 [29]Volek A, Pyczak F, Singer R F, Mughrabi H. Scripta Mater, 2005; 52(2): 141 [30]Gale W F, Totemeir T C, Smithells C J. Smithells Metals Reference Book. 8th ed. Oxford: Butterworth-Heinemann, 2004: 4-44 [31]Carroll L J, Feng Q, Pollock T M. Metall Mater Trans A, 2008; 39(6): 1290 [32]Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans A, 2006; 37(10): 2927 [33]Chen J Y, Zhao B, Feng Q, Cao L M. In: Joseph R, Omer D, Donna B, Shiela W, eds., San Francisco, CA: TMS, 2009: 233
[1] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[2] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[3] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[4] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[5] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[6] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[7] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[8] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[9] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[10] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[11] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[12] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[13] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[14] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[15] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
No Suggested Reading articles found!