Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (9): 1041-1046    DOI: 10.3724/SP.J.1037.2009.00833
论文 Current Issue | Archive | Adv Search |
LPSO STRUCTURE AND AGING PHASES IN Mg-Gd-Zn-Zr ALLOY
ZENG Xiaoqin1, 2), WU Yujuan1, 2, 3),  PENG Liming1, 2), LIN Dongliang1, 2),  DING Wenjiang1, 2), PENG Yinghong3)
1) National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2) The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
3) School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240
Cite this article: 

ZENG Xiaoqin WU Yujuan PENG Liming LIN Dongliang DING Wenjiang PENG Yinghong. LPSO STRUCTURE AND AGING PHASES IN Mg-Gd-Zn-Zr ALLOY. Acta Metall Sin, 2010, 46(9): 1041-1046.

Download:  PDF(979KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

At present, long period stacking ordered (LPSO) structures in Mg-RE-Zn (RE=Y, Dy, Ho, Er, Gd, Tb, Tm) alloys have been focused on. According to some reports, Mg-Gd-Zn alloys are classified as type II, i.e., there are no LPSO structures in as-cast alloys, but LPSO structures appear after heat treatment. To further study the formation of LPSO structure in Mg-Gd-Zn(Zr)\linebreak alloys, a Mg96.32Gd2.50Zn1.00Zr0.18 alloy was prepared by ingot metallurgy (I/M) in this work. Based on OM, SEM and TEM observations, the as-cast microstructure of Mg-Gd-Zn-Zr alloy consists of α-Mg solid solution, lamellar 14H-type LPSO structure within α-Mg grains and dendritic eutectic structure at grain boundaries, in which the eutectic phase is the β-phase ((Mg, Zn)3Gd)), thus, Mg-Gd-Zn(Zr) alloys should be attributed to type I, i.e., there are LPSO structures in as-cast alloys. During solid solution treatment at 500 ℃ for 35 h, a solid transformation, dendritic β-phase with fcc structure→lamellar X-phase with 14H structure, was observed at grain boundaries. During subsequent peak-aging treatment at 200 ℃ for 128 h, ellipsoidal β´ and rhombus β1 phases precipitated within α-Mg grains. Tensile tests at room temperature and Vickers hardness tests show that the alloy solution-treated and aging-treated has higher mechanical properties, i.e., σb=290.7 MPa, σs=162.5 MPa, δ=10.35% and 108.0 HV. The improvement of mechanical properties are attributed to the composite strengthening-and-toughening effect of the 14H-type LPSO structures, and the β´ and β1 aging phases.

Key words:  Mg-Gd-Zn-Zr alloy      long period stacking ordered (LPSO) structure      lamellar      aging treatment     
Received:  14 December 2009     
Fund: 

Supported by National Natural Science Foundation of China (No.50971089), Science and Technology  Commission of Shanghai Municipality (No.08JC1412200) and China Postdoctoral  Science Foundation (No.20090460615)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00833     OR     https://www.ams.org.cn/EN/Y2010/V46/I9/1041

[1] Ding W J, Wu Y J, Peng L M, Zeng X Q, Yuan G Y. J Mater Res, 2009; 24: 1842 [2] Wu Y J, Zeng X Q, Lin D L, Peng L M, Ding W J. J Alloys Compd, 2009; 447: 193 [3] Wu Y J, Lin D L, Zeng X Q, Peng L M, Ding W J. J Mater Sci, 2009; 44: 1607 [4] Wu Y J, Peng L M, Lin D L, Zeng X Q, Ding W J. J Mater Res, 2009; 24: 3596 [5] Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M. Mater Sci Eng, 2005; A393: 269 [6] Amiya K, Ohsuna T, Inoue A. Mater Trans, 2003; 44: 2151 [7] Kawamura Y, Yamasaki M. Mater Trans, 2007; 48: 2986 [8] Yamasaki M, Anan T, Yoshimoto S, Kawamura Y. Scr Mater, 2005; 53: 799 [9] YamasakiM, SasakiM, Nishijima M, Hiraga K, Kawamura Y. Acta Mater, 2007; 55: 6798 [10] Abe E, Kawamura Y, Hayashi K, Inoue A. Acta Mater, 2002; 5: 3845 [11] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Mater Trans, 2001; 42: 1172 [12] Nishida M, Kawamura Y, Yamamuro T. Mater Sci Eng, 2004; A375–377: 1217 [13] Yoshimoto S, Yamasaki M, Kawamura Y. Mater Trans, 2006; 47: 959 [14] Itoi T, Seimiya T, Kawamura Y, Hirohashi M. Scr Mater, 2004; 51: 107 [15] Yamada K, Okubo Y, Shiono M, Shiono M, Watanabe H, Kamado S, Kojima Y. Mater Trans, 2006; 47: 1066 [16] Honma T, Ohkubo T, Kamado S, Hono K. Acta Mater, 2007; 55: 137 [17] Nishijima M, Hiraga K, Yamasaki M, Kawamura Y. Mater Trans, 2008; 49: 227 [18] Guo K X, Ye H Q, Wu Y K. Application of Electron Diffraction Patterns in Crystallography. Beijing: Science Press, 1983: 370 (郭可信, 叶恒强, 吴玉琨. 电子衍射图在晶体学中的应用. 北京: 科学出版社, 1983: 370) [19] Honma T, Ohkubo T, Hono K, Kamado S. Mater Sci Eng, 2005; A395: 301 [20] Nie J F, Muddle B C. Scr Mater, 1999; 40: 1089 [21] Nie J F, Muddle B C. Acta Mater, 2000; 48: 1691 [22] Nie J F, Gao X, Zhu S M. Scr Mater, 2005; 53: 1049 [23] Nie J F, Oh–ishi K, Gao X, Hono K. Acta Mater, 2008; 56: 6061 [24] Antion C, Donnadieu P, Perrard F, Deschamps A, Tassin C, Pisch A. Acta Mater, 2003; 51: 5335
[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[3] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[4] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[5] Yanqing SU, Tong LIU, Xinzhong LI, Ruirun CHEN, Jingjie GUO, Hengzhi FU. The Evolution of Seeding Technique for the Lamellar Orientation Controlling of γ-TiAl Based Alloys[J]. 金属学报, 2018, 54(5): 647-656.
[6] LIU Fenjun, FU Li, ZHANG Wenyuan, MENG Qiang, DONG Chunlin, LUAN Guohong. INTERFACE STRUCTURE AND MECHANICAL PRO-PERTIES OF FRICTION STIR WELDING JOINT OF 2099-T83/2060-T8 DISSIMILAR Al-Li ALLOYS[J]. 金属学报, 2015, 51(3): 281-288.
[7] ZHU Chunlei, LI Sheng, LI Haizhao, ZHANG Ji. EFFECT OF THERMAL EXPOSURE AT 750 ℃ ON ROOM TEMPERATURE TENSILE DUCTILITY OF CAST TiAl ALLOY WITH DIRECTIONAL LAMELLAR MICROSTRUCTURE[J]. 金属学报, 2014, 50(12): 1478-1484.
[8] YANG Zenan, YANG Zhigang, XIA Yuan, ZHANG Chi. CALCULATION OF AUSTENIZATION RATE OF LAMELLAR PEARLITE[J]. 金属学报, 2013, 49(7): 890-896.
[9] LIU Renci, WANG Zhen, LIU Dong, BAI Chunguang, CUI Yuyou, YANG Rui. MICROSTRUCTURE AND TENSILE PROPERTIES OF Ti-45.5Al-2Cr-2Nb-0.15B ALLOY PROCESSED BY HOT EXTRUSION[J]. 金属学报, 2013, 49(6): 641-648.
[10] LI Junjie, Godfrey Andrew, LIU Wei. EFFECTS OF AUSTENITIZATION AND COOLING RATES  ON THE MICROSTRUCTURE IN A HYPEREUTECTOID STEEL[J]. 金属学报, 2013, 49(5): 583-592.
[11] YANG Chenggong, SHAN Jiguo, REN Jialie. PHASE TRANSFORMATION TEMPERATURE CONTROL OF WELD METAL OF LASER WELDED TiNi SHAPE MEMORY ALLOY JOINT[J]. 金属学报, 2013, 49(2): 199-206.
[12] YU Huichen, DONG Chengli, JIAO Zehui, KONG Fantao, CHEN Yuyong, SU Yongjun. HIGH TEMPERATURE CREEP AND FATIGUE BEHAVIOR AND LIFE PREDICTION METHOD  OF A TiAl ALLOY[J]. 金属学报, 2013, 49(11): 1311-1317.
[13] PENG Yingbo, CHEN Feng, WANG Minzhi, SU Xiang, CHEN Guang. RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti-45Al-8Nb ALLOY[J]. 金属学报, 2013, 49(11): 1457-1461.
[14] XIANG Hongliang FAN Jinchun LIU Dong GUO Peipei. EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
I. Microstructure and Evolution of Copper-Rich Phase
[J]. 金属学报, 2012, 48(9): 1081-1088.
[15] HU Benfu LIU Guoquan WU Kai HU Penghui. MORPHOLOGICAL CHANGES BEHAVIOR OF FAN-TYPE STRUCTURES OF γ' PRECIPITATES IN NICKEL-BASED POWDER METALLURGY SUPERALLOYS[J]. 金属学报, 2012, 48(7): 830-836.
No Suggested Reading articles found!