Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (6): 900-908    DOI: 10.11900/0412.1961.2023.00299
Research paper Current Issue | Archive | Adv Search |
Supercooled Liquid Characteristics and Crystallization Decoupling of Zr61Ti2Cu25Al12 Amorphous Alloy
LI Xiaocheng1(), KOU Shengzhong1,2(), LI Chunling3, LI Chunyan1,2, ZHAO Yanchun1,2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Cite this article: 

LI Xiaocheng, KOU Shengzhong, LI Chunling, LI Chunyan, ZHAO Yanchun. Supercooled Liquid Characteristics and Crystallization Decoupling of Zr61Ti2Cu25Al12 Amorphous Alloy. Acta Metall Sin, 2025, 61(6): 900-908.

Download:  HTML  PDF(1611KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Plastic deformation of amorphous alloys below the glass transition temperature is inhomogeneous and highly localized within narrow shear bands. However, the processing and manufacturing of amorphous alloys in their supercooled liquid state exhibit unique advantages for engineering application. Although the discovery of bulk metallic glasses has substantially expanded the processing time and temperature window, experimental research on the supercooled liquid states of amorphous alloys remains widely limited to narrow regions near either their glass transition temperature or melting point. The crystallization of supercooled liquids severely limits the characterization of their kinetic behavior in the high-temperature region. Therefore, an enhanced comprehensive understanding of supercooled liquid characteristics and crystallization kinetic behavior of metallic glasses is necessary. Zr61Ti2Cu25Al12 amorphous alloy shows broad application prospects in the fabrication of flexible mechanism components and biological implants because of its high fracture toughness, high elastic strain limit, and good biocompatibility properties. Six orders of magnitude (10-2-104 K/s) of heating rate changes were achieved for Zr61Ti2Cu25Al12 metallic glass by combining flash differential scanning calorimetry (FDSC) with conventional DSC. This implies that the kinetic characteristics of the alloy supercooled liquid is dependent on the heating rate of the alloy over an ultra-extensive temperature range. The kinetic behavior of the alloy supercooled liquid lags behind the rapid changes in temperature, and both follow the Vogel-Fulcher-Tammann equation. The small variation in the fragility index (m = 35-47) indicates that the supercooled liquid structure changes gently with temperature, thereby showing a “strong” liquid behavior. An average m ≈ 45 is obtained over the entire temperature range from the glass transition temperature to the melting point via time dimension coordinate translation. The dependence of crystal growth on temperature during the crystallization process of the Zr61Ti2Cu25Al12 amorphous alloy indicates that the activation energy of crystal growth gradually decreases with increasing temperature, and the reduction in activation energy per unit temperature obtained here is approximately 0.5 kJ/(mol·K). Near the glass transition temperature, decoupling occurs between crystal growth kinetics and viscous flow. The kinetics coefficient for crystal growth (Ukin) follows a power law relationship with viscosity (η) over a wide temperature range when an exponent ξ = 0.84 is introduced: Ukinη-ξ.

Key words:  amorphous alloy      flash DSC      supercooled liquid      viscosity      fragility      crystallization     
Received:  11 July 2023     
ZTFLH:  TG139  
Fund: National Natural Science Foundation of China(51971103);National Natural Science Foundation of China(51861021);Key Research and Development Program of Gansu Province(20YF8GA052)
Corresponding Authors:  LI Xiaocheng, Tel: (0931)2976702, E-mail: lixc@lut.edu.cn
KOU Shengzhong, professor, Tel: (0931)2976702, E-mail: kousz@lut.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00299     OR     https://www.ams.org.cn/EN/Y2025/V61/I6/900

Fig.1  XRD spectrum (a) and HRTEM image (Inset shows selected area electron diffraction (SAED) pattern) (b) of Zr61Ti2Cu25Al12 as-cast rod with a diameter of 3 mm
Fig.2  Heat flow curves of conventional DSC at low heating rate (Φh) from 0.05 K/s to 1.33 K/s (As a comparison, 500 K/s is also included in Fig.2a) (a) and FDSC at high Φh from 100 K/s to 5.5 × 104 K/s (Φh = 100, 200, 400, 600, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 6000, 7000, 8000, 9000, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 55000 K/s) (b) for Zr61Ti2Cu25Al12 metallic glass (DSC—differential scanning calorimetry, FDSC—fast differential scanning calorimetry, Φc─cooling rate, T─temperature, Tg─glass transition temperature, Tx─crystallization temperature, Tp─crystallization peak temperature, ΔHm─melting enthalpy)
Fig.3  Changes in activation energy for glass transition (a) and crystallization (b) of Zr61Ti2Cu25Al12 amorphous alloy and corresponding Kissinger plots (E─activation energy, Eg─activation energy relative to Tg, Ep─activation energy relative to Tp)
Fig.4  Dependence of the characteristic temperatures in Zr61Ti2Cu25Al12 alloy on the natural logarithm of the Φh (a) and adjusted with proper time dimension shift (b) (m─fragility index; mTg─fragility relative to Tg; mTX─fragility relative to Tx; mTP─fragility relative to Tp; r2─determination coefficient; 4 denotes the relative scale on the y-axis, the same below)
Characteristic temperatureB0D0

T0

K

r2
Tg23.57.2509.80.992
Tx19.012.5446.90.997
Tp17.911.7451.90.998
Table 1  lnΦh-T fitting parameters (B0, D0, T0) and r2 for characteristic temperatures of Zr61Ti2Cu25Al12 alloy
Fig.5  Kissinger plots for characteristic temperatures of Zr61Ti2Cu25Al12 metallic glass (a) and adjusted with proper time dimension shift (b) (U─crystal growth rate; η─viscosity; Ukin─kinetic coefficient for crystal growth; Tc─characteristic temperatures Tg, Tx, and Tp)
Fitting formulaCharacteristic temperatureA2B / K4C / KT1 / Kr2
lnU-1000 / TTg-0.329231.62.0771.00.997
Tx0.8188892.891.0903.50.996
Tp0.3166443.862.61013.60.993
lnUkin-1000 / TTg-0.855827.91.8769.30.997
Tx-0.8916427.347.4899.10.997
Tp-1.3308220.731.8967.70.999
Table 2  lnU-1000 / T and lnUkin-1000 / T fitting parameters and determination coefficients for characteristic temperatures of Zr61Ti2Cu25Al12 alloy
Characteristic temperature

A0

Pa·s

C0

K

T2

K

r2
Tg8.78353396.1514.70.991
Tx0.01844744.9464.30.997
Tp0.00955867.8421.20.997
Table 3  -lnη-1000 / T fitting parameters and determination coefficient for characteristic temperatures of Zr61Ti2Cu25Al12 alloy
Fig.6  Angell plot for reduced temperature dependence of viscosity in several representative glass forming liquids[36~38] (The strongest SiO2 and the most fragile o-terphenyl as the upper and lower limits are also included)
Fig.7  Decoupling exponent (ξ) representing the decoupling of crystal growth kinetics from viscous flow plotted as a function of the supercooled liquid m (GST—Ge2Sb2Te5)
1 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
2 Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24: 42
3 Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
4 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
5 Li C Y, Zhu F P, Ding J Q, et al. Nanoindentation investigation on creep behavior of Zr-based bulk metallic glass [J]. Rare Met. Mater. Eng., 2020, 49: 3353
6 Zhao Y C, Mao X J, Li W S, et al. Microstructure and corrosion behavior of Fe-15Mn-5Si-14Cr-0.2C amorphous steel [J]. Acta Metall. Sin., 2020, 56: 715
doi: 10.11900/0412.1961.2019.00275
赵燕春, 毛雪晶, 李文生 等. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为 [J]. 金属学报, 2020, 56: 715
doi: 10.11900/0412.1961.2019.00275
7 He Q, Cheng Y Q, Ma E, et al. Locating bulk metallic glasses with high fracture toughness: Chemical effects and composition optimization [J]. Acta Mater., 2011, 59: 202
8 He Q, Xu J. Locating malleable bulk metallic glasses in Zr-Ti-Cu-Al alloys with calorimetric glass transition temperature as an indicator [J]. J. Mater. Sci. Technol., 2012, 28: 1109
9 Li D F, Yang Y L, Shen Y, et al. Bending fatigue behavior of thin Zr61Ti2Cu25Al12 bulk metallic glass beams for compliant mechanisms application [J]. J. Mater. Sci. Technol., 2021, 89: 1
10 Li J, Shi L L, Zhu Z D, et al. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: Biocompatibility assessment by in vitro cellular responses [J]. Mater. Sci. Eng., 2013, C33: 2113
11 Liu S S, Hou C N, Wang E G, et al. Plastic rheological behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 amorphous alloys in the supercooled liquid region [J]. Acta Metall. Sin., 2021, 58: 807
刘帅帅, 侯超楠, 王恩刚 等. Zr61Cu25Al12Ti2和Zr52.5Cu17.9Ni14.6Al10-Ti5块体非晶合金过冷液相区的塑性流变行为 [J]. 金属学报, 2021, 58: 807
12 Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal. Chem., 1957, 29: 1702
13 Brüning R, Samwer K. Glass transition on long time scales [J]. Phys. Rev., 1992, 46B: 11318
14 Bai F X, Yao J H, Wang Y X, et al. Crystallization kinetics of an Au-based metallic glass upon ultrafast heating and cooling [J]. Scripta Mater., 2017, 132: 58
15 Yang Q, Peng S X, Bu Q Z, et al. Revealing glass transition and supercooled liquid in Ni80P20 metallic glass [J]. Acta Metall. Sin., 2021, 57: 553
杨 群, 彭思旭, 卜庆周 等. 非晶态Ni80P20合金的玻璃转变和过冷液体性质 [J]. 金属学报, 2021, 57: 553
16 Yang Q, Huang J, Qin X H, et al. Revealing hidden supercooled liquid states in Al-based metallic glasses by ultrafast scanning calorimetry: Approaching theoretical ceiling of liquid fragility [J]. Sci. China Mater., 2020, 63: 157
17 Orava J, Greer A L, Gholipour B, et al. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry [J]. Nat. Mater., 2012, 11: 279
doi: 10.1038/nmat3275 pmid: 22426461
18 Chen Y X, Zhou D S, Hu W B. Progress of differential scanning calorimetry and its application in polymer characterization [J]. Acta Polym. Sin., 2021, 52: 423
陈咏萱, 周东山, 胡文兵. 示差扫描量热法进展及其在高分子表征中的应用 [J]. 高分子学报, 2021, 52: 423
19 Angell C A. Formation of glasses from liquids and biopolymers [J]. Science, 1995, 267: 1924
pmid: 17770101
20 Ashkenazy Y, Averback R S. Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals [J]. Acta Mater., 2010, 58: 524
21 Sun Y, Xi H M, Chen S, et al. Crystallization near glass transition: Transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs [J]. J. Phys. Chem., 2008, 112B: 5594
22 Ediger M D, Harrowell P, Yu L. Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity [J]. J. Chem. Phys., 2008, 128: 034709
23 Nascimento M L F, Zanotto E D. Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition? [J]. J. Chem. Phys., 2010, 133: 174701
24 Zhuravlev E, Schick C. Fast scanning power compensated differential scanning nano-calorimeter: 1. The device [J]. Thermochim. Acta, 2010, 505: 1
25 Zhuravlev E, Schick C. Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis [J]. Thermochim. Acta, 2010, 505: 14
26 Kelton K F. Analysis of crystallization kinetics [J]. Mater. Sci. Eng., 1997, A226-228: 142
27 Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15 [J]. Mater. Sci. Eng., 1976, 23: 173
28 Vogel H. The law of the relation between the viscosity of liquids and the temperature [J]. Phys. Zeit., 1921, 22: 645
29 Fulcher G S. Analysis of recent measurements of the viscosity of glasses [J]. J. Am. Ceram. Soc., 1925, 8: 339
30 Tammann G, Hesse W. Die abhängigkeit der viscosität von der temperatur bei unterkühlten flüssigkeiten [J]. Z. Anorg. Allg. Chem., 1926, 156: 245
31 Bohmer R, Angell C A. Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids [J]. Phys. Rev., 1992, 45B: 10091
32 Perera D N, Tsai A P. Thermal and viscoelastic properties of a strong bulk metallic glass former [J]. J. Phys., 2000, 33D: 1937
33 Chen H S. A method for evaluating viscosities of metallic glasses from the rates of thermal transformations [J]. J. Non-Cryst. Solids, 1978, 27: 257
34 Cohen M H, Grest G S. Liquid-glass transition a free-volume approach [J]. Phys. Rev., 1979, 20B: 1077
35 Angell C A, Sichina W. Thermodynamics of the glass transition: Empirical aspects [J]. Ann. N. Y. Acad. Sci., 1976, 279: 53
36 Busch R, Schroers J, Wang W H. Thermodynamics and kinetics of bulk metallic glass [J]. MRS Bull., 2007, 32: 620
37 Waniuk T A, Busch R, Masuhr A, et al. Equilibrium viscosity of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass-forming liquid and viscous flow during relaxation, phase separation, and primary crystallization [J]. Acta Mater., 1998, 46: 5229
38 Busch R, Gallino I. Kinetics, thermodynamics, and structure of bulk metallic glass forming liquids [J]. JOM, 2017, 69: 2178
39 Alba C, Busse L E, List D J, et al. Thermodynamic aspects of the vitrification of toluene, and xylene isomers, and the fragility of liquid hydrocarbons [J]. J. Chem. Phys., 1990, 92: 617
[1] CAI Zhengqing, YIN Dawei, YANG Liang, WANG Wenxiang, WANG Feilong, WEN Yongqing, MA Mingzhen. Effect of Ag Substitution of Cu on Properties of Zr-Ti-Cu-Al Amorphous Alloys[J]. 金属学报, 2025, 61(4): 572-582.
[2] BAO Chengli, LI Hao, HU Li, ZHOU Tao, TANG Ming, HE Qubo, LIU Xiangguo. Construction of Hot Processing Map of Solutionized Mg-10Gd-6Y-1.5Zn-0.5Zr Alloy and Microstructure Evolution[J]. 金属学报, 2025, 61(4): 632-642.
[3] PENG Zichao, LUO Junpeng, ZHAO Yu, ZHOU Lei, WANG Xuqing, ZOU Jinwen. Evolution of Microstrucutre During Static Recrystallization in FGH96 Superalloy[J]. 金属学报, 2025, 61(2): 235-242.
[4] LIU Guanghui, WANG Weiguo, Rohrer Gregory S, CHEN Song, LIN Yan, TONG Fang, FENG Xiaozheng, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in a Dynamically Recrystallized Al-Zn-Mg-Cu Alloy Compressed at Elevated Temperature[J]. 金属学报, 2024, 60(9): 1165-1178.
[5] DONG Weixia, YAO Zhongzheng, LIU Sinan, CHEN Guoxing, WANG Xun-Li, WU Zhenduo, LAN Si. Evolution of Short-to-Medium Range Orders During the Liquid-Liquid Phase Transition of a Pd-Si Metallic Glass[J]. 金属学报, 2024, 60(8): 1119-1129.
[6] YANG Ruize, ZHAI Ruzong, REN Shaofei, SUN Mingyue, XU Bin, QIAO Yanxin, YANG Lanlan. Evolution and Healing Mechanism of 1Cr22Mn16N High Nitrogen Austenitic Stainless Steel Interface Microstructure During Plastic Deformation Bonding[J]. 金属学报, 2024, 60(7): 915-925.
[7] XIONG Yi, LUAN Zewei, MA Yunfei, LI Yong, ZHA Xiaoqin. Effect of Surface Nanocrystallization Induced by Supersonic Fine Particles Bombardment on Corrosion Fatigue Behavior of 300M Steel[J]. 金属学报, 2024, 60(5): 627-638.
[8] JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. 金属学报, 2024, 60(4): 434-442.
[9] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[10] CHEN Shenghu, WANG Qiyu, JIANG Haichang, RONG Lijian. Effect of δ-Ferrite on Hot Deformation and Recrystallization of 316KD Austenitic Stainless Steel for Sodium-Cooled Fast Reactor Application[J]. 金属学报, 2024, 60(3): 367-376.
[11] HU Baojia, ZHENG Qinyuan, LU Yi, JIA Chunni, LIANG Tian, ZHENG Chengwu, LI Dianzhong. Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties[J]. 金属学报, 2024, 60(2): 189-200.
[12] ZHAI Xinya, HE Zhenghua, SHA Yuhui, ZHU Xiaofei, LI Feng, CHEN Lijia, ZUO Liang. Inhibitor and Secondary Recrystallization Behavior of Giant Magnetostriction of Fe-Ga Thin Sheet[J]. 金属学报, 2024, 60(11): 1559-1570.
[13] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[14] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[15] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
No Suggested Reading articles found!