Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (6): 909-916    DOI: 10.11900/0412.1961.2024.00077
Research paper Current Issue | Archive | Adv Search |
Strengthening and Plastifying Mechanisms of a Novel High-Strength Low-Density Austenitic Steel
LI Fushun, LIU Zhipeng, DING Cancan, HU Bin(), LUO Haiwen()
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

LI Fushun, LIU Zhipeng, DING Cancan, HU Bin, LUO Haiwen. Strengthening and Plastifying Mechanisms of a Novel High-Strength Low-Density Austenitic Steel. Acta Metall Sin, 2025, 61(6): 909-916.

Download:  HTML  PDF(2712KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-strength low-density steels are strongly recommended in the automotive industry because they can reduce weight and CO2 emissions without affecting structural safety. In this study, a novel Cr-alloyed austenitic steel with a low density of 6.50 g/cm3 was designed. It was subjected to two types of processing routes. One includes cold rolling with a thickness reduction of 35% followed by aging at 450 oC for 1.5 h (known as 35CR-T). The other route includes cold rolling by 75%, short annealing at 925 oC for 10 s, and final aging at 450 oC for 1.5 h (known as 75CR-AT). Both resultant specimens exhibited excellent tensile properties; the specific yield strength and total elongation of the 35CR-T and 75CR-AT specimens reached 211.5 MPa·cm3/g, 15.6% and 210.0 MPa·cm3/g3, 21.5%, respectively. The microstructure of the former comprises relatively coarse austenite grains with high-density dislocations as the matrix and coarse κ-carbides, whereas that of the latter comprises fine recrystallized austenite grains and more extensive intragranular κ-carbides with a finer size. Consequently, greater dislocation strengthening contributes to the yield strength (YS) of the former, whereas more significant grain refinement and precipitation strengthening contribute to the YS of the latter. Therefore, both specimens have the same YS after considering all strengthening contributors. Moreover, the recrystallized austenite grains in 75CR-AT allow the sequential evolution of the dislocation substructure from planar-slip dislocations, Taylor lattice, and high-density dislocation wall to the microband during tensile deformation. By contrast, the dislocation microbands formed in the austenite grains of 35CR-T specimen suppress the dislocation multiplication and sequential evolution of dislocation substructures, resulting in poorer ductility compared with that of 75CR-AT specimen.

Key words:  austenitic low-density steel      Cr-alloying      κ-carbide      dislocation substructure      mechanical property     
Received:  12 March 2024     
ZTFLH:  TG135.7  
Fund: Yunnan Key Research and Development Program(202403AA080013);National Natural Science Foundation of China(52233018);National Natural Science Foundation of China(51831002);Beijing Municipal Natural Science Foundation(2242048)
Corresponding Authors:  HU Bin, associate professor, Tel: (010)62332911, E-mail: hubin@ustb.edu.cn;
LUO Haiwen, professor, Tel: (010)62332911, E-mail: luohaiwen@ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00077     OR     https://www.ams.org.cn/EN/Y2025/V61/I6/909

Fig.1  Tensile properties of experimental steel subjected to the different processing routes and comparision with literature data[5,7-19]
(a) engineering stress-strain curves
(b) comparison on tensile properties of the steel and other alloy[5,7-19], including Cr-alloyed[5,9], Ni-alloyed[7], and Si-alloyed[13] Fe-Mn-Al-C low-density steels
SpecimenProcessing route

YS

MPa

SYS

MPa·cm3·g-1

UTS

MPa

SUTS

MPa·cm3·g-1

TE

%

35CRCR by 35%1260193.91405216.220.4
35CR-TCR by 35% + aging at 450 oC for 1.5 h1375211.51425219.215.6
75CRCR by 75%1605246.91855285.45.4
75CR-TCR by 75% + aging at 450 oC for 1.5 h2085320.82210340.02.3
75CR-ATCR by 75% + annealing at 925 oC for 10 s +1365210.01425219.221.5
aging at 450 oC for 1.5 h
Table 1  Tensile properties of the experimental steel subjected to different processing routes
Fig.2  EBSD phase distribution (a-e) and grain reference orientation deviation (GROD) (f-j) maps (Note that the red areas in Figs.2c and d are the highly dislocated regions that cannot be indexed; RD, TD, and ND represent rolling direction, transverse direction, and normal direction, respectively)
(a, f) 35CR (b, g) 35CR-T (c, h) 75CR (d, i) 75CR-T (e, j) 75CR-AT
Specimen

Austenite area

fraction / %

Ferrite area

fraction / %

Austenite grain size

μm

Recrystallization austenite fraction

%

35CR98.91.16.5110.6
35CR-T98.21.86.0213.3
75CR96.23.81.481.8
75CR-T96.83.21.2012.5
75CR-AT92.67.41.6598.6
Table 2  Statistic results on the microstructural constitutens in all the specimens based on EBSD data
Fig.3  Brigth-field TEM images showing the microbands (a), κ-carbides (b), and the recrystallized austenite grains (c); and dark-field TEM image showing κ-carbides (d) of specimens
(a, b) 35CR-T (c, d) 75CR-AT
Fig.4  EBSD-KAM maps (a, b) and XRD spectra (c, d) of 35CR-T (a, c) and 75CR-AT (b, d) specimens (The color in Figs.4a and b represents the kernel average misorientation (KAM). αγ —austenite lattice constant; ακκ-carbide lattice constant)
Fig.5  Comparison on the contribution of three strengthening mechanisms to increment of yield strength in 35CR-T and 75CR-AT specimens (Δσg—grain refinement strengthening increment, Δσd—dislocation hardening increment, Δσp—precipitation hardening increment)
Fig.6  Bright-field TEM images of the microstructures of 75CR-AT (a-d) and 35CR-T (e-g) specimens tensile deformed to different true strains
(a, e) 0.02 (b, f) 0.08 (c, g) 0.11 (d) 0.20
1 Moon J, Ha H Y, Park S J, et al. Effect of Mo and Cr additions on the microstructure, mechanical properties and pitting corrosion resistance of austenitic Fe-30Mn-10.5Al-1.1C lightweight steels [J]. J. Alloys Compd., 2019, 775: 1136
2 Liu C Q, Peng Q C, Xue Z L, et al. Research situation of Fe-Mn-Al-C system low-density high-strength steel [J]. Mater. Rep., 2019, 33: 2572
刘春泉, 彭其春, 薛正良 等. Fe-Mn-Al-C系列低密度高强钢的研究现状 [J]. 材料导报, 2019, 33: 2572
3 Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
4 Huang Z Y, Hou A L, Jiang Y S, et al. Rietveld refinement, microstructure, mechanical properties and oxidation characteristics of Fe-28Mn-xAl-1C (x = 10 and 12 wt. %) low-density steels [J]. J. Iron Steel Res. Int., 2017, 24: 1190
5 Sutou Y, Kamiya N, Umino R, et al. High-strength Fe-20Mn-Al-C-based alloys with low density [J]. ISIJ Int., 2010, 50: 893
6 Chen X P, Xu Y P, Ren P, et al. Aging hardening response and β-Mn transformation behavior of high carbon high manganese austenitic low-density Fe-30Mn-10Al-2C steel [J]. Mater. Sci. Eng., 2017, A703: 167
7 Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility [J]. Nature, 2015, 518: 77
8 Yoo J D, Hwang S W, Park K T. Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel [J]. Mater. Sci. Eng., 2009, A508: 234
9 Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Res. Int., 2006, 77: 627
10 Raabe D, Springer H, Gutierrez-Urrutia I, et al. Alloy design, combinatorial synthesis, and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels [J]. JOM, 2014, 66: 1845
11 Yang F Q, Song R B, Li Y P, et al. Tensile deformation of low density duplex Fe-Mn-Al-C steel [J]. Mater. Des., 2015, 76: 32
12 Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight [J]. Mater. Sci. Eng., 2011, A528: 5196
13 Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature [J]. Mater. Sci. Eng., 2013, A586: 276
14 Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Mater. Sci. Eng., 2019, A752: 160
15 Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel [J]. Mater. Sci. Eng., 2008, A496: 417
16 Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels [J]. Scr. Mater., 2013, 68: 343
17 Lee J, Park S, Kim H, et al. Simulation of κ-carbide precipitation kinetics in aged low-density Fe-Mn-Al-C steels and its effects on strengthening [J]. Met. Mater. Int., 2018, 24: 702
18 Wu Z Q, Ding H, An X H, et al. Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content [J]. Mater. Sci. Eng., 2015, A639: 187
19 Jiang Z H, Jin J J, Wang X Z, et al. Microstructure and properties of a low-density steel with high strength of 1350 MPa [J]. J. Aeronaut. Mater., 2018, 38(5): 67
江志华, 金建军, 王晓震 等. 一种1350 MPa级低密度高强度钢的组织性能 [J]. 航空材料学报, 2018, 38(5): 67
doi: 10.11868/j.issn.1005-5053.2018.000032
20 Seward G G E, Celotto S, Prior D J, et al. In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium [J]. Acta Mater., 2004, 52: 821
21 Humphreys F J. Review Grain and subgrain characterisation by electron backscatter diffraction [J]. J. Mater. Sci., 2001, 36: 3833
22 Wang Y J, Sun J J, Jiang T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility [J]. Acta Mater., 2018, 158: 247
23 He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177 pmid: 28839008
24 Wang Z W, Lu W J, Zhao H, et al. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation [J]. Sci. Adv., 2020, 6: eaba9543
25 Ardell A J. Precipitation hardening [J]. Metall. Trans., 1985, 16A: 2131
26 Zhao Y L, Li Y R, Yeli G M, et al. Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense nanoscale precipitates [J]. Acta Mater., 2022, 223: 117480
27 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
28 Wang Z W, Lu W J, Zhao H, et al. Formation mechanism of κ- carbides and deformation behavior in Si-alloyed FeMnAlC lightweight steels [J]. Acta Mater., 2020, 198: 258
29 Zhang J L, Raabe D, Tasan C C. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics [J]. Acta Mater., 2017, 141: 374
30 Yoo J D, Hwang S W, Park K T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel [J]. Metall. Mater. Trans., 2009, 40A: 1520
[1] QIN Lanyun, ZHANG Jian, YI Junzhen, CUI Yanfeng, YANG Guang, WANG Chao. Effects of Solution Aging on Microstructural Evolution and Mechanical Properties of Laser Deposition Repairing ZM6 Alloy[J]. 金属学报, 2025, 61(6): 875-886.
[2] MENG Xianglong, LIU Ruiliang, Li D. Y.. First Principles Study on the Precipitation and Properties of Carbides in the Surface Carburized Layer of Tantalum Alloys[J]. 金属学报, 2025, 61(5): 797-808.
[3] LEI Yunlong, YANG Kang, XIN Yue, JIANG Zitao, TONG Baohong, ZHANG Shihong. Microstructure Evolution of Mechanically-Alloying and Its Subsequently-Annealed AlCrCu0.5Mo0.5Ni High-Entropy Alloy[J]. 金属学报, 2025, 61(5): 731-743.
[4] CAI Zhengqing, YIN Dawei, YANG Liang, WANG Wenxiang, WANG Feilong, WEN Yongqing, MA Mingzhen. Effect of Ag Substitution of Cu on Properties of Zr-Ti-Cu-Al Amorphous Alloys[J]. 金属学报, 2025, 61(4): 572-582.
[5] SUN Jun, LIU Gang, YANG Chong, ZHANG Peng, XUE Hang. Heat-Resistant Al Alloys: Microstructural Design and Preparation[J]. 金属学报, 2025, 61(4): 521-525.
[6] YANG Minghui, LI Xingwu, SUN Chonghao, RUAN Ying. Microstructure and Mechanical Properties of Monel K-500 Alloy in Synergetic Modulation of Directional Solidification and Thermal Processing[J]. 金属学报, 2025, 61(4): 561-571.
[7] OUYANG Sihui, SHE Jia, CHEN Xianhua, PAN Fusheng. Preparation of Biodegradable Mg-Based Composites and Their Recent Advances in Orthopedic Applications[J]. 金属学报, 2025, 61(3): 455-474.
[8] WANG Sheng, ZHU Yancheng, PAN Hucheng, LI Jingren, ZENG Zhihao, QIN Gaowu. Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy[J]. 金属学报, 2025, 61(3): 499-508.
[9] PANG Mengyao, WU Ruizhi, MA Xiaochun, JIN Siyuan, YU Zhe, Boris Krit. Effect of Hot Rolling Process on Mechanical Property and Corrosion Behavior of Rapidly Degrading Mg-Li Alloy[J]. 金属学报, 2025, 61(3): 509-520.
[10] DAI Jincai, MIN Xiaohua, XIN Shewei, LIU Fengjin. Effect of Interstitial Element O on Cryogenic Mechanical Properties in β-Type Ti-15Mo Alloy[J]. 金属学报, 2025, 61(2): 243-252.
[11] WAN Jie, LI Haotian, LIU Shuji, LU Hongzhou, WANG Lisheng, ZHANG Zhendong, LIU Chunhai, JIA Jianlei, LIU Haifeng, CHEN Yuzeng. Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy[J]. 金属学报, 2025, 61(1): 117-128.
[12] ZHU Man, ZHANG Cheng, XU Junfeng, JIAN Zengyun, XI Zengzhe. Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys[J]. 金属学报, 2025, 61(1): 88-98.
[13] ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing, LIU Yongchang. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. 金属学报, 2025, 61(1): 165-176.
[14] ZHANG Shengyu, MA Qingshuang, YU Liming, ZHANG Jingwen, LI Huijun, GAO Qiuzhi. Effect of Pre-Aging on Microstructure and Properties of Cold-Rolled Alumina-Forming Austenitic Steel[J]. 金属学报, 2025, 61(1): 177-190.
[15] ZHANG Qiankun, HU Xiaofeng, JIANG Haichang, RONG Lijian. Effect of Si on Microstructure and Mechanical Properties of a 9Cr Ferritic/Martensitic Steel[J]. 金属学报, 2024, 60(9): 1200-1212.
No Suggested Reading articles found!