Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (6): 887-899    DOI: 10.11900/0412.1961.2023.00346
Research paper Current Issue | Archive | Adv Search |
Softening Mechanism and Hydrogen Permeability of Rare Earth Y-Doped V-Cr Alloys
YANG Bo1, CHEN Xiaoliang1, SHI Xiaobin1, REN Wei2,3, GAO Heng3, SONG Guangsheng1()
1 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China
2 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China
3 International Center for Quantum and Molecular Structures, Physics Department, College of Sciences, Shanghai University, Shanghai 200444, China
Cite this article: 

YANG Bo, CHEN Xiaoliang, SHI Xiaobin, REN Wei, GAO Heng, SONG Guangsheng. Softening Mechanism and Hydrogen Permeability of Rare Earth Y-Doped V-Cr Alloys. Acta Metall Sin, 2025, 61(6): 887-899.

Download:  HTML  PDF(5604KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

V100 - x Cr x (x = 8 or 10, atomic fraction, %) hydrogen-separation alloys undergo cracks during cold rolling and are difficult to be shaped via room temperature processing. However, the addition of rare-earth element Y can greatly improve their cold-rolling plastic deformation ability, facilitating the low-cost fabrication of V-based alloy membranes for hydrogen separation with high flux on a large scale. In order to achieve both high hydrogen-permeation efficiency and service life, insight into the hydrogen permeability and hydrogen-embrittlement resistance is required on the basis of excellent cold-rolling formability. In this work, the effects of Y addition on the microstructure, cold-rolling formability, hydrogen permeability, and hydrogen-embrittlement resistance of as-cast V100 - x - y Cr x Y y (x = 8, y = 1; x = 10, y = 0, 1, 3) hydrogen-separation alloys were studied using an oxygen-nitrogen-hydrogen analyzer, a cold-rolling machine, a hardness tester, a tension machine, and a hydrogen-permeation device as well as via XRD, SEM, TEM, and EPMA. In addition, the causes of the embrittlement of the V100 - x Cr x alloys and plasticization mechanism of V-Cr-Y alloys were explained. The microstructure formation and hydrogen-embrittlement resistance of V-Cr and V-Cr-Y alloys were also analyzed. Results showed that V-Cr alloys show a single-phase equiaxed grain microstructure, while V-Cr-Y alloys show a composite microstructure comprising a dendritic solid solution and secondary-phase particles located in the inter-dendritic region. The addition of Y in binary V-Cr alloys remarkably reduces the hardness, thereby greatly improving cold-rolling formability. Among the V91Cr8Y1, V89Cr10Y1, and V87Cr10Y3 alloys, V91Cr8Y1 showed the lowest hardness (108.88 HV) and highest maximum cold-rolling reduction rate (94.5%). Although the hydrogen permeability of the V-Cr-Y alloys was lower than those of Y-free alloys, it was still 2.5-3.0 times higher than those of commercial Pd77Ag23 alloys. Moreover, the V-Cr-Y alloys showed much better hydrogen-embrittlement resistance than those of V-Cr alloys and could be slowly cooled to room temperature without rupture. Rare-earth metal Y as a scavenger could react with O and S to form secondary-phase particles, exerting a purification effect, which softened the matrix and reduced the resistance of alloys to plastic deformation. Thus, high-performance V-Cr-Y alloy membranes with an excellent combination of formability and hydrogen-embrittlement resistance were prepared.

Key words:  rare earth element      formability      softening mechanism      hydrogen permeability      hydrogen embrittlement-resistant property     
Received:  17 August 2023     
ZTFLH:  TG146.4  
Fund: National Natural Science Foundation of China(51875002);Open Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy(SKLASS 2022-13);Science and Technology Commission of Shanghai Municipality(19DZ2270200);Open Project of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials(GFST2022KF08)
Corresponding Authors:  SONG Guangsheng, professor, Tel: 13329182538, E-mail: song_ahut@163.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00346     OR     https://www.ams.org.cn/EN/Y2025/V61/I6/887

Fig.1  Schematic of tensile specimen size at room temperature (unit: mm)
Fig.2  Schematic of hydrogen permeation device (MFC—mass flow controller)
Fig.3  XRD spectra of as-cast V alloys (Dash lines show the pure vanadium diffraction peaks)
Fig.4  SEM images of as-cast V92Cr8 (a), V90Cr10 (b), V91Cr8Y1 (c), V89Cr10Y1 (d), and V87Cr10Y3 (e) alloys (Insets in Figs.4c-e show the corresponding high magnified images)
Fig.5  TEM image of grain boundary in as-cast V90Cr10 alloy (a), EDS line scan of grain boundary (b), HRTEM image (c), and fast Fourier transform (FFT) map corresponding to Fig.5c (d)
Fig.6  TEM images of phase boundary (a1) and matrix and Y-rich phase (b1) in as-cast V87Cr10Y3 alloy; EDS line scan from matrix to rich Y-phase in Fig.6a1 (a2); HRTEM images (b2, b3); and FFT maps (c1-c3)
Fig.7  BSE image of as-cast V87Cr10Y3 alloy (a) and EPMA mappings of V (b), Cr (c), Y (d), O (e), and S (f)
PointVCrYOS
10.745084.47114.7840
21.462098.1000.4370
386.63113.369000
Table 1  EPMA point scan results obtained from points 1-3 in Fig.7a
Fig.8  Cold rolling schematic (a), cold-rolled sample photograph (b), and OM images of cold-rolled V92Cr8 (c), V90Cr10 (d), V91Cr8Y1 (e), V89Cr10Y1 (f), and V87Cr10Y3 (g) alloys (ND—normal direction, RD—rolling direction, TD—transverse direction)
Fig.9  Low (a, c) and high (b, d) magnified SEM images of tensile fracture of as-cast V90Cr10 (a, b) and V87Cr10Y3 (c, d) alloys (Inset in Fig.9d shows the stress-strain curve of V87Cr10Y3 alloy)
Fig.10  Vickers hardnesses and nanoindentation hardnesses of matrix (a) and maximum cold-rolling reduction rate (b) of as-cast V-Cr and V-Cr-Y alloys
Fig.11  Hydrogen permeability of as-cast V-Cr, V-Cr-Y, and Pd77Ag23[33] alloy membranes at 400 oC
Fig.12  Hydrogen permeation curves of as-cast V-Cr and V-Cr-Y alloy membranes obtained at a slow cooling rate of 2.5 oC/min and hydrogen pressure difference of 0.7 MPa
Fig.13  Optical images showing surface integrity of hydrogen permeated membranes of V-Cr and V-Cr-Y alloys
(a) V92Cr8 (b) V90Cr10 (c) V91Cr8Y1 (d) V89Cr10Y1 (e) V87Cr10Y3
Fig.14  Gibbs free energy changes (ΔG) of oxides (a) and sulfides (b) of V, Cr, and Y
1 Zhang Y S, Dong D, Xiao Y, et al. Current status and trends in energy production, consumption, and storage under carbon neutrality conditions in China [J]. Chin. Sci. Bull., 2021, 66: 4466
张永生, 董 舵, 肖 逸 等. 我国能源生产、消费、储能现状及碳中和条件下变化趋势 [J]. 科学通报, 2021, 66: 4466
2 Cao J W, Zhang W Q, Li Y F, et al. Current status of hydrogen production in China [J]. Prog. Chem., 2021, 33: 2215
doi: 10.7536/PC201128
曹军文, 张文强, 李一枫 等. 中国制氢技术的发展现状 [J]. 化学进展, 2021, 33: 2215
3 Li X G. Status and development of hydrogen preparation, storage and transportation [J]. Chin. Sci. Bull., 2022, 67: 425
李星国. 氢气制备和储运的状况与发展 [J]. 科学通报, 2022, 67: 425
4 Li Z Y, Huang W, Zhang C F. Research progress on high purity hydrogen purification technology for fuel cell [J]. Energy Chem. Ind., 2020, 41(5): 1
李忠于, 黄 伟, 张楚璠. 燃料电池用高纯氢纯化技术研究进展 [J]. 能源化工, 2020, 41(5): 1
5 Jiang P, Huang H C, Sun B L, et al. Microstructure, mechanical properties and hydrogen permeability of multiphase V-Ti-Ni alloy membranes [J]. Mater. Today Commun., 2020, 24: 101112
6 Dolan M D. Non-Pd BCC alloy membranes for industrial hydrogen separation [J]. J. Membr. Sci., 2010, 362: 12-28
7 Griessen R, Riesterer T. Heat of formation models [A]. Hydrogen in Intermetallic Compounds I [M]. Berlin: Springer, 1988: 219
8 Suzuki A, Yukawa H, Ijiri S, et al. Alloying effects on hydrogen solubility and hydrogen permeability for V-based alloy membranes [J]. Mater. Trans., 2015, 56: 1688
9 Dolan M D, Kellam M E, McLennan K G, et al. Hydrogen transport properties of several vanadium-based binary alloys [J]. Int. J. Hydrogen Energy, 2013, 38: 9794
10 Dolan M D, McLennan K G, Way J D. Diffusion of atomic hydrogen through V-Ni alloy membranes under nondilute conditions [J]. J. Phys. Chem., 2012, 116C: 1512
11 Yukawa H, Nambu T, Matsumoto Y. V-W alloy membranes for hydrogen purification [J]. J. Alloys Compd., 2011, 509: S881
12 Li X Z, Huang F F, Liu D M, et al. V-Cr-Cu dual-phase alloy membranes for hydrogen separation: An excellent combination of ductility, hydrogen permeability and embrittlement resistance [J]. J. Membr. Sci., 2017, 524: 354
13 Li X Z, Huang F F, Su Y Q, et al. Development of dual-phase V90Fe5Al5/Cu alloys for enhanced malleability and sustainable hydrogen permeability [J]. J. Membr. Sci., 2019, 591: 117325
14 Ishikawa K, Tokui S, Aoki K. Microstructure and hydrogen permeation of cold rolled and annealed Nb40Ti30Ni30 alloy [J]. Intermetallics, 2009, 17: 109
15 Li X Z, Liu D M, Liang X, et al. Hydrogen transport behavior of as-cast, cold rolled and annealed Nb40Ti30Co30 alloy membranes [J]. J. Membr. Sci., 2016, 514: 294
16 Tang H X, Ishikawa K, Aoki K. Changes in hydrogen permeability and microstructures of Nb-(Ti, Zr)Ni alloys by cold rolling and annealing [J]. Mater. Trans., 2007, 48: 2454
17 Kato T, Ishikawa K, Aoki K. Effect of Ti/Ni ratio and annealing on microstructure and hydrogen permeability of Nb-TiNi alloy [J]. Mater. Trans., 2008, 49: 2214
18 Kainuma T, Iwao N, Suzuki T, et al. Effects of oxygen, nitrogen and carbon additions on the mechanical properties of vanadium and V/Mo alloys [J]. J. Nucl. Mater., 1979, 80: 339
19 Zhang J, Han W Z. Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium [J]. Acta Mater., 2020, 196: 122
doi: 10.1016/j.actamat.2020.06.023
20 Kurtz R J, Hamilton M L, Li H. Grain boundary chemistry and heat treatment effects on the ductile-to-brittle transition behavior of vanadium alloys [J]. J. Nucl. Mater., 1998, 258-263: 1375
21 Xu L Q, Hu X P, Jiang S N, et al. Study on microstructure and mechanical properties of Y2O3 particle reinforced vanadium alloy [J]. Hot Work. Technol., 2021, 50(22): 50
徐立群, 胡心平, 姜少宁 等. Y2O3颗粒增强钒合金的组织及力学性能的研究 [J]. 热加工工艺, 2021, 50(22): 50
22 Smith J F, Bailey D M, Carlson O N. The Cr-V (chromium-vanadium) system [J]. J. Phase Equilib., 1982, 2: 469
23 Massalski T B, Murray J L, Bennett L H, et al. Binary Alloy Phase Diagrams (Volume 2) [M]. Metals Park, Ohio: American Society for Metals, 1986: 2154
24 Venkatraman M, Neumann J P. The Cr-Y (Chromium-yttrium) system [J]. Bull. Alloy Phase Diagr., 1985, 6: 429
25 Senkov O N, Miracle D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys [J]. Mater. Res. Bull., 2001, 36: 2183
26 Deng L, Zhang X M, Tang J F, et al. First-principles study of the binding preferences and diffusion behaviors of solutes in vanadium alloys [J]. J. Alloys Compd., 2016, 660: 55
27 Kuwabara T, Kurishita H, Hasegawa M. Development of an ultra-fine grained V-1.7 mass% Y alloy dispersed with yttrium compounds having superior ductility and high strength [J]. Mater. Sci. Eng., 2006, A417: 16
28 Kurishita H, Kuwabara T, Hasegawa M. Development of fine-grained V-28Cr-2.3 Y and V-52Cr-1.8Y alloys with superior mechanical properties [J]. Mater. Sci. Eng., 2006, A433: 32
29 Gordy W, Thomas W J O. Electronegativities of the elements [J]. J. Chem. Phys., 1956, 24: 439
30 Carlson O N. The O-Y (oxygen-yttrium) system [J]. Bull. Alloy Phase Diagr., 1990, 11: 61
31 Iwao N, Kainuma T, Suzuki T, et al. Ductility of V-Cr and V-Cr-Zr alloy ingots [J]. J. Less-Common Met., 1981, 79: 19
32 Kim K H, Park H C, Lee J, et al. Vanadium alloy membranes for high hydrogen permeability and suppressed hydrogen embrittlement [J]. Scr. Mater., 2013, 68: 905
33 Paglieri S N, Wermer J R, Buxbaum R E, et al. Development of membranes for hydrogen separation: Pd coated V-10Pd [J]. Energy Mater., 2008, 3: 169
34 Alexander D G, Carlson O N. The V-VO phase system [J]. Metall. Trans., 1971, 2: 2805
35 Yu J Q, Yi W Z, Chen B D, et al. Binary Alloy Phase-Diagrams [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1987: 547
虞觉奇, 易文质, 陈邦迪 等. 二元合金状态图集 [M]. 上海: 上海科学技术出版社, 1987: 547
36 Zhang P B, Zhao J J, Zou T T, et al. A review of solute-point defect interactions in vanadium and its alloys: First-principles modeling and simulation [J]. Tungsten, 2021, 3: 38
37 Qin J Y, Wang Z M, Wang D H, et al. Dissolution, diffusion, and penetration of H in the group VB metals investigated by first-principles method [J]. Int. J. Hydrogen Energy, 2019, 44: 29083
38 Heo N J, Nagasaka T, Muroga T, et al. Effect of impurity levels on precipitation behavior in the low-activation V-4Cr-4Ti alloys [J]. J. Nucl. Mater., 2002, 307-311: 620
39 Bradford S A. The effect of oxygen on physical and mechanical properties of vanadium [D]. Iowa: Iowa State University, 1961
40 Beale H A, Arsenault R J. The preparation and some mechanical properties of high-purity vanadium [J]. Metall. Trans., 1970, 1: 3355
41 Yang P J, Li Q J, Tsuru T, et al. Mechanism of hardening and damage initiation in oxygen embrittlement of body-centred-cubic niobium [J]. Acta Mater., 2019, 168: 331
42 Dutta A. Compressive deformation of Fe nanopillar at high strain rate: Modalities of dislocation dynamics [J]. Acta Mater., 2017, 125: 219
43 Lee H J, Wirth B D. Molecular dynamics simulation of dislocation-void interactions in BCC Mo [J]. J. Nucl. Mater., 2009, 386-388: 115
44 Zhang X M, Li Y F, He Q L, et al. Investigation of the interstitial oxygen behaviors in vanadium alloy: A first-principles study [J]. Curr. Appl. Phys., 2018, 18: 183
45 Jo M G, Madakashira P P, Suh J Y, et al. Effect of oxygen and nitrogen on microstructure and mechanical properties of vanadium [J]. Mater. Sci. Eng., 2016, A675: 92
46 Diercks D R, Loomis B A. Alloying and impurity effects in vanadium-base alloys [J]. J. Nucl. Mater., 1986, 141-143: 1117
47 Zhang P B, Li X J, Zhao J J, et al. Atomic investigation of alloying Cr, Ti, Y additions in a grain boundary of vanadium [J]. J. Nucl. Mater., 2016, 468: 147
48 Lee S, Yi Y, Bee P. First-principles study of segregation behavior of Cr/Ti/Y at grain boundary in vanadium [J]. Int. J. Mater. Mech. Manuf., 2018, 6: 31
49 Huang F F, Li X Z, Shan X R, et al. Hydrogen transport through the V-Cr-Al alloys: Hydrogen solution, permeation and thermal-stability [J]. Sep. Purif. Technol., 2020, 240: 116654
50 Lu Y L, Gou M M, Bai R M, et al. First-principles study of hydrogen behavior in vanadium-based binary alloy membranes for hydrogen separation [J]. Int. J. Hydrogen Energy, 2017, 42: 22925
51 Griessen R, Riesterer T. Heat of formation models [A]. Hydrogen in Intermetallic Compounds I: Electronic, Thermodynamic, and Crystallographic Properties, Preparation [M]. Berlin: Springer, 1988: 219
[1] ZHU Guijie, WANG Siqing, ZHA Min, LI Meijuan, SUN Kai, CHEN Dongfeng. Effect of Rare Earth Element Ce on the Bulk Texture and Mechanical Anisotropy of As-Extruded Mg-0.3Al- 0.2Ca-0.5Mn Alloy Sheets[J]. 金属学报, 2024, 60(8): 1079-1090.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[4] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[5] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[6] Zhipeng WAN, Tao WANG, Yu SUN, Lianxi HU, Zhao LI, Peihuan LI, Yong ZHANG. Dynamic Softening Mechanisms of GH4720Li AlloyDuring Hot Deformation[J]. 金属学报, 2019, 55(2): 213-222.
[7] Xuan YU, Zhihao ZHANG, Jianxin XIE. Microstructure, Ordered Structure and Warm TensileDuctility of Fe-6.5%Si Alloy with Various Ce Content[J]. 金属学报, 2017, 53(8): 927-936.
[8] Yi CHEN, Mingxing GUO, Long YI, Bo YUAN, Gaojie LI, Linzhong ZHUANG, Jishan ZHANG. Optimization and Controlling on the Microstructure, Texture and Properties of an Advanced Al-Mg-Si-Cu-Zn Alloy Sheet[J]. 金属学报, 2017, 53(8): 907-917.
[9] Yajun HUI, Hui PAN, Kun LIU, Wenyuan LI, Yang YU, Bin CHEN, Yang CUI. Strengthening Mechanism of 600 MPa Grade Nb-Ti Microalloyed High Formability Crossbeam Steel[J]. 金属学报, 2017, 53(8): 937-946.
[10] Peng JIANG,Tongxin YUAN,Yandong YU. Effect of Processing Conditions on Microstructure and Property of Multiphase V-Ti-Ni Alloys for Hydrogen Purifying[J]. 金属学报, 2017, 53(4): 433-439.
[11] Yan ZHANG,Mingxing GUO,Hui XING,Fei WANG,Xiaofeng WANG,Jishan ZHANG,Linzhong ZHUANG. INFLUENCE OF DIFFERENT THERMOMECHANICAL PROCESSES ON THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF Al-Mg-Si-Cu ALLOY SHEETS[J]. 金属学报, 2015, 51(12): 1425-1434.
[12] LIANG Houquan, GUO Hongzhen, NING Yongquan, YAO Zekun, ZHAO Zhanglong. ANALYSIS ON THE CONSTITUTIVE RELATIONSHIP OF TC18 TITANIUM ALLOY BASED ON THE SOFTENING MECHANISM[J]. 金属学报, 2014, 50(7): 871-878.
[13] YAN Erhu, LI Xinzhong, TANG Ping, SU Yanqing, GUO Jingjie, FU Hengzhi. MICROSTRUCTURE AND HYDROGEN PERMEATION CHARACTERISTIC OF NEAR EUTECTIC Nb-Ti-Co HYDROGEN SEPARATION ALLOY[J]. 金属学报, 2014, 50(1): 71-78.
[14] ZHANG Hui WANG Shaoqing. FIRST-PRINCIPLES STUDY ON THE PHASE STABILITY OF Mg-La AND Mg-Nd BINARY ALLOYS[J]. 金属学报, 2012, 48(7): 889-894.
[15] JIA Bin PENG Yan. CONSTITUTIVE RELATIONSHIPS OF Nb MICROALLOYED STEEL DURING HIGH TEMPERATURE DEFORMATION[J]. 金属学报, 2011, 47(4): 507-512.
No Suggested Reading articles found!