|
|
Research Progress of Materials Design for Metal Laser Additive Manufacturing |
SONG Bo, ZHANG Jinliang, ZHANG Yuanjie, HU Kai, FANG Ruxuan, JIANG Xin, ZHANG Xinru, WU Zusheng, SHI Yusheng( ) |
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China |
|
Cite this article:
SONG Bo, ZHANG Jinliang, ZHANG Yuanjie, HU Kai, FANG Ruxuan, JIANG Xin, ZHANG Xinru, WU Zusheng, SHI Yusheng. Research Progress of Materials Design for Metal Laser Additive Manufacturing. Acta Metall Sin, 2023, 59(1): 1-15.
|
Abstract Laser additive manufacturing is widely recognized to be an effective method to form complicated and custom metallic components. The existing research on metal additive manufacturing utilizes traditional alloy grades, which are designed based on the assumption that solidification occurs at equilibrium; thus, these materials are not well suited to the nonequilibrium metallurgical dynamics that are present in additive manufacturing techniques. Common issues, such as high crack susceptibility, low toughness, and low fatigue capability, as well as anisotropy, frequently occur during the fabrication of additively manufactured metallic parts. It is therefore necessary to conduct research on the design of new materials designed specifically for laser additive manufacturing in order to fully realize the potential advantages and value of the ultrafast solidification conditions. In this article, the technical bottlenecks, material design methods, and the development of new materials that are applicable to laser additively manufactured metal materials are reviewed; these materials include aluminum alloys, titanium alloys, iron-based alloys, and magnesium alloys. Finally, the potential future direction of research related to laser metal additive manufacturing is discussed.
|
Received: 19 January 2022
|
|
Fund: National Natural Science Foundation of China(51922044);China Postdoctoral Science Foundation Funded Project(2021M701293);China Postdoctoral Science Foundation Funded Project(2021M690061) |
About author: SHI Yusheng, professor, Tel: (027)87558155, E-mail: shiyusheng@hust.edu.cn
|
1 |
Shi Y S. The industrial application and industrialization development of 3D printing technology [J]. Mach. Des. Manuf. Eng., 2016, 45(2): 11
|
|
史玉升. 3D打印技术的工业应用及产业化发展 [J]. 机械设计与制造工程, 2016, 45(2): 11
|
2 |
Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
|
|
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
|
3 |
Yap C Y, Chua C K, Dong Z L, et al. Review of selective laser melting: Materials and applications [J]. Appl. Phys. Rev., 2015, 2: 041101
|
4 |
Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
doi: 10.1179/1743280411Y.0000000014
|
5 |
Han J. Research on anisotropy of Ti6Al4V alloy fabricated by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2016
|
|
韩 婕. 激光选区熔化成形Ti6Al4V合金的各向异性研究 [D]. 武汉: 华中科技大学, 2016
|
6 |
Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
doi: 10.1016/j.jmst.2018.09.004
|
7 |
Li W, Liu J, Zhou Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting [J]. Scr. Mater., 2016, 118: 13
doi: 10.1016/j.scriptamat.2016.02.022
|
8 |
Jia Q B, Du D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties [J]. J. Alloys Compd., 2014, 585: 713-721
doi: 10.1016/j.jallcom.2013.09.171
|
9 |
Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronaut. Manuf. Technol., 2016, (12): 26
|
|
杨 强, 鲁中良, 黄福享 等. 激光增材制造技术的研究现状及发展趋势 [J]. 航空制造技术, 2016, (12): 26
|
10 |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
|
11 |
Zhang J L, Yuan W H, Song B, et al. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys [J]. Adv. Powder Mater., 2022, 1: 100035
|
12 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
|
13 |
Zhang H, Zhu H H, Nie X J, et al. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy [J]. Scr. Mater., 2017, 134: 6
doi: 10.1016/j.scriptamat.2017.02.036
|
14 |
Nie X J, Zhang H, Zhu H H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys [J]. J. Alloys Compd., 2018, 764: 977
doi: 10.1016/j.jallcom.2018.06.032
|
15 |
Li R D, Wang M B, Li Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J]. Acta Mater., 2020, 193: 83
doi: 10.1016/j.actamat.2020.03.060
|
16 |
Jia Q B, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al-Mn-Sc alloy: Alloy design and strengthening mechanisms [J]. Acta Mater., 2019, 171: 108
doi: 10.1016/j.actamat.2019.04.014
|
17 |
Zhang J L, Gao J B, Song B, et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting [J]. Addit. Manuf., 2021, 38: 101829
|
18 |
Gu D D, Wang H Q, Dai D H, et al. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting [J]. Scr. Mater., 2015, 96: 25
doi: 10.1016/j.scriptamat.2014.10.011
|
19 |
Gu D D, Rao X W, Dai D H, et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: Processing optimization, microstructure evolution and mechanical properties [J]. Addit. Manuf., 2019, 29: 100801
|
20 |
Wang M, Song B, Wei Q S, et al. Improved mechanical properties of AlSi7Mg/nano-SiCp composites fabricated by selective laser melting [J]. J. Alloys Compd., 2019, 810: 151926
doi: 10.1016/j.jallcom.2019.151926
|
21 |
Tan H, Hao D P, Al-Hamdani K, et al. Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders [J]. Mater. Lett., 2018, 214: 123
doi: 10.1016/j.matlet.2017.11.121
|
22 |
Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility [J]. Acta Mater., 2017, 129: 183
doi: 10.1016/j.actamat.2017.02.062
|
23 |
Gao C F, Xiao Z Y, Liu Z Q, et al. Selective laser melting of nano-TiN modified AlSi10Mg composite powder with low laser reflectivity [J]. Mater. Lett., 2019, 236: 362
doi: 10.1016/j.matlet.2018.10.126
|
24 |
Gao C, Wang Z, Xiao Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties [J]. J. Mater. Process. Technol., 2020, 281: 116618
doi: 10.1016/j.jmatprotec.2020.116618
|
25 |
Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
|
26 |
Kruth J P, Mercelis P, Van Vaerenbergh J, et al. Binding mechanisms in selective laser sintering and selective laser melting [J]. Rapid Prototyp. J., 2005, 11: 26
doi: 10.1108/13552540510573365
|
27 |
Shipley H, McDonnell D, Culleton M, et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review [J]. Int. J. Mach. Tools Manuf., 2018, 128: 1
doi: 10.1016/j.ijmachtools.2018.01.003
|
28 |
Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
|
29 |
Zhang J L, Song B, Cai C, et al. Tailorable microstructure and mechanical properties of selective laser melted TiB/Ti-6Al-4V composite by heat treatment [J]. Adv. Powder Mater., 2022, 1: 100010
|
30 |
Attar H, Bönisch M, Calin M, et al. Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties [J]. Acta Mater., 2014, 76: 13
doi: 10.1016/j.actamat.2014.05.022
|
31 |
Zhang J L, Song B, Yang L, et al. Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion [J]. Composites, 2020, 202B: 108417
|
32 |
Gu D D, Meng G B, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement [J]. Scr. Mater., 2012, 67: 185
doi: 10.1016/j.scriptamat.2012.04.013
|
33 |
Han C J, Babicheva R, Chua J D Q, et al. Microstructure and mechanical properties of (TiB + TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders [J]. Addit. Manuf., 2020, 36: 101466
|
34 |
Zhang W X. Research on the key technologies for selective laser melting process [D]. Wuhan: Huazhong University of Science and Technology, 2008
|
|
章文献. 选择性激光熔化快速成形关键技术研究 [D]. 武汉: 华中科技大学, 2008
|
35 |
Zhang S. Research on the forming processes and properties in selective laser melting of medical alloy powders [D]. Wuhan: Huazhong University of Science and Technology, 2014
|
|
张 升. 医用合金粉末激光选区熔化成形工艺与性能研究 [D]. 武汉: 华中科技大学, 2014
|
36 |
Zhao X. Fundamental research on the microstructure and properties evolution of tool steels fabricated by seletive laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2016
|
|
赵 晓. 激光选区熔化成形模具钢材料的组织与性能演变基础研究 [D]. 武汉: 华中科技大学, 2016
|
37 |
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
|
38 |
Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
|
39 |
Zhang Y J, Zhang J L, Yan Q, et al. Amorphous alloy strengthened stainless steel manufactured by selective laser melting: Enhanced strength and improved corrosion resistance [J]. Scr. Mater., 2018, 148: 20
doi: 10.1016/j.scriptamat.2018.01.016
|
40 |
Zhang Y J, Song B, Ming J, et al. Corrosion mechanism of amorphous alloy strengthened stainless steel composite fabricated by selective laser melting [J]. Corros. Sci., 2020, 163: 108241
doi: 10.1016/j.corsci.2019.108241
|
41 |
Grzesiak D, AlMangour B, Krawczyk M, et al. Selective laser melting of TiC reinforced stainless steel nanocomposites: Mechanical behaviour at elevated temperatures [J]. Mater. Lett., 2019, 256: 126633
doi: 10.1016/j.matlet.2019.126633
|
42 |
Liu Y F, Tang M K, Hu Q, et al. Densification behavior, microstructural evolution, and mechanical properties of TiC/AISI420 stainless steel composites fabricated by selective laser melting [J]. Mater. Des., 2019, 187: 108381
doi: 10.1016/j.matdes.2019.108381
|
43 |
Zhao S M, Shen X F, Yang J L, et al. Densification behavior and mechanical properties of nanocrystalline TiC reinforced 316L stainless steel composite parts fabricated by selective laser melting [J]. Opt. Laser Technol., 2018, 103: 239
doi: 10.1016/j.optlastec.2018.01.005
|
44 |
Zhao X, Wei Q S, Gao N, et al. Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing [J]. J. Mater. Process. Technol., 2019, 270: 8
doi: 10.1016/j.jmatprotec.2019.01.028
|
45 |
Salman O O, Gammer C, Eckert J, et al. Selective laser melting of 316L stainless steel: Influence of TiB2 addition on microstructure and mechanical properties [J]. Mater. Today Commun., 2019, 21: 100615
|
46 |
Hu H, Wen S F, Duan L C, et al. Enhanced corrosion behavior of selective laser melting S136 mould steel reinforced with nano-TiB2 [J]. Opt. Laser Technol., 2019, 119: 105588
doi: 10.1016/j.optlastec.2019.105588
|
47 |
Wen S F, Hu H, Zhou Y, et al. Enhanced hardness and wear property of S136 mould steel with nano-TiB2 composites fabricated by selective laser melting method [J]. Appl. Surf. Sci., 2018, 457: 11
doi: 10.1016/j.apsusc.2018.06.220
|
48 |
Song B, Dong S J, Coddet C. Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC [J]. Scr. Mater., 2014, 75: 90
doi: 10.1016/j.scriptamat.2013.11.031
|
49 |
Wu C L, Zhang S, Zhang C H, et al. Effects of SiC content on phase evolution and corrosion behavior of SiC-reinforced 316L stainless steel matrix composites by laser melting deposition [J]. Opt. Laser Technol., 2019, 115: 134
doi: 10.1016/j.optlastec.2019.02.029
|
50 |
Song B, Wang Z W, Yan Q, et al. Integral method of preparation and fabrication of metal matrix composite: Selective laser melting of in-situ nano/submicro-sized carbides reinforced iron matrix composites [J]. Mater. Sci. Eng., 2017, A707: 478
|
51 |
Wen S F, Chen K Y, Li W, et al. Selective laser melting of reduced graphene oxide/S136 metal matrix composites with tailored microstructures and mechanical properties [J]. Mater. Des., 2019, 175: 107811
doi: 10.1016/j.matdes.2019.107811
|
52 |
Zhou Y, Gui Q Y, Yu W Y, et al. Interfacial diffusion printing: An efficient manufacturing technique for artificial tubular grafts [J]. ACS Biomater. Sci. Eng., 2019, 5: 6311
doi: 10.1021/acsbiomaterials.9b01293
|
53 |
Taltavull C, Shi Z, Torres B, et al. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution [J]. J. Mater. Sci. Mater. Med., 2014, 25: 329
doi: 10.1007/s10856-013-5087-y
|
54 |
Zhang W N, Wang L Z, Feng Z X, et al. Research progress on selective laser melting (SLM) of magnesium alloys: A review [J]. Optik, 2020, 207: 163842
doi: 10.1016/j.ijleo.2019.163842
|
55 |
Gunduz K O, Oter Z C, Tarakci M, et al. Plasma electrolytic oxidation of binary Mg-Al and Mg-Zn alloys [J]. Surf. Coat. Technol., 2017, 323: 72
doi: 10.1016/j.surfcoat.2016.08.040
|
56 |
Tan Q Y, Mo N, Lin C L, et al. Generalisation of the oxide reinforcement model for the high oxidation resistance of some Mg alloys micro-alloyed with Be [J]. Corros. Sci., 2019, 147: 357
doi: 10.1016/j.corsci.2018.12.001
|
57 |
Lee S J, Do L H T. Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy [J]. Surf. Coat. Technol., 2016, 307: 781
doi: 10.1016/j.surfcoat.2016.10.008
|
58 |
Shuai C J, He C X, Feng P, et al. Biodegradation mechanisms of selective laser-melted Mg-xAl-Zn alloy: Grain size and intermetallic phase [J]. Virtual Phys. Prototy., 2018, 13: 59
doi: 10.1080/17452759.2017.1408918
|
59 |
Zhou M R, Morisada Y, Fujii H. Effect of Ca addition on the microstructure and the mechanical properties of asymmetric double-sided friction stir welded AZ61 magnesium alloy [J]. J. Magnes. Alloy., 2020, 8: 91
doi: 10.1016/j.jma.2020.02.001
|
60 |
Yang J, Peng J, Nyberg E A, et al. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy [J]. Appl. Surf. Sci., 2016, 369: 92
doi: 10.1016/j.apsusc.2016.01.283
|
61 |
Baek S M, Kang J S, Shin H J, et al. Role of alloyed Y in improving the corrosion resistance of extruded Mg-Al-Ca-based alloy [J]. Corros. Sci., 2017, 118: 227
doi: 10.1016/j.corsci.2017.01.022
|
62 |
Shuai C J, He C X, Xu L, et al. Wrapping effect of secondary phases on the grains: Increased corrosion resistance of Mg-Al alloys [J]. Virtual Phys. Prototy., 2018, 13: 292
doi: 10.1080/17452759.2018.1479969
|
63 |
Zhang M, Chen C J, Liu C, et al. Study on porous Mg-Zn-Zr ZK61 alloys produced by laser additive manufacturing [J]. Metals, 2018, 8: 635
doi: 10.3390/met8080635
|
64 |
Long T, Zhang X H, Huang Q L, et al. Novel Mg-based alloys by selective laser melting for biomedical applications: Microstructure evolution, microhardness and in vitro degradation behaviour [J]. Virtual Phys. Prototy., 2018, 13: 71
doi: 10.1080/17452759.2017.1411662
|
65 |
Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing [J]. Smart Mater. Struct., 2014, 23: 104002
doi: 10.1088/0964-1726/23/10/104002
|
66 |
Haberland C, Meier H, Frenzel J. On the properties of Ni-rich NiTi shape memory parts produced by selective laser melting [A]. ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems [C]. Stone Mountain, GA, USA: American Society of Mechanical Engineers, 2012: 97
|
67 |
Hamilton R F, Palmer T A, Bimber B A. Spatial characterization of the thermal-induced phase transformation throughout as-deposited additive manufactured NiTi bulk builds [J]. Scr. Mater., 2015, 101: 56
doi: 10.1016/j.scriptamat.2015.01.018
|
68 |
Habijan T, Haberland C, Meier H, et al. The biocompatibility of dense and porous nickel-titanium produced by selective laser melting [J]. Mater. Sci. Eng., 2013, C33: 419
|
69 |
Tan C L, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations [J]. Int. J. Mach. Tools Manuf., 2019, 141: 19
doi: 10.1016/j.ijmachtools.2019.04.002
|
70 |
Xue L, Atli K C, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework [J]. Acta Mater., 2021, 215: 117017
doi: 10.1016/j.actamat.2021.117017
|
71 |
Zhang Q Q, Hao S J, Liu Y T, et al. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability [J]. Appl. Mater. Today, 2020, 19: 100547
|
72 |
Lu B W, Cui X F, Ma W Y, et al. Promoting the heterogeneous nucleation and the functional properties of directed energy deposited NiTi alloy by addition of La2O3 [J]. Addit. Manuf., 2020, 33: 101150
|
73 |
Li S. Fundamental research on the microstructure and properties evolution of nickel-based superalloy fabricated by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2017
|
|
李 帅. 激光选区熔化成形镍基高温合金的组织与性能演变基础研究 [D]. 武汉: 华中科技大学, 2017
|
74 |
Kakehi K, Banoth S, Kuo Y L, et al. Effect of yttrium addition on creep properties of a Ni-base superalloy built up by selective laser melting [J]. Scr. Mater., 2020, 183: 71
doi: 10.1016/j.scriptamat.2020.03.014
|
75 |
Wang H L. Effect of element Re and W on microstructure and properties of selective laser melting GH4169 nickel-based alloy powder [D]. Taiyuan: North University of China, 2015
|
|
王海丽. 元素Re和W对选区激光熔化GH4169镍基合金组织及性能的影响 [D]. 太原: 中北大学, 2015
|
76 |
Chen L, Sun Y Z, Li L, et al. Effect of heat treatment on the microstructure and high temperature oxidation behavior of TiC/Inconel 625 nanocomposites fabricated by selective laser melting [J]. Corros. Sci., 2020, 169: 108606
doi: 10.1016/j.corsci.2020.108606
|
77 |
Li X F, Yi D H, Liu B, et al. Graphene-strengthened Inconel 625 alloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2020, A798: 140099
|
78 |
Zhang B C, Bi G J, Nai S, et al. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting [J]. Opt. Laser Technol., 2016, 80: 186
doi: 10.1016/j.optlastec.2016.01.010
|
79 |
Wang W Q, Wang S Y, Chen F, et al. Microstructure and mechanical properties of TiN/Inconel 718 composites fabricated by selective laser melting [J]. Acta. Metall. Sin., 2021, 57: 1017
doi: 10.11900/0412.1961.2020.00485
|
|
王文权, 王苏煜, 陈飞 等. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能 [J]. 金属学报, 2021, 57: 1017
doi: 10.11900/0412.1961.2020.00485
|
80 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
|
81 |
Cantor B., Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
82 |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
doi: 10.1016/j.actamat.2013.04.058
|
83 |
Huo W Y, Liu X D, Tan S Y, et al. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films [J]. Appl. Surf. Sci., 2018, 439: 222
doi: 10.1016/j.apsusc.2018.01.050
|
84 |
Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
|
85 |
Li R D, Niu P D, Yuan T C, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloys Compd., 2018, 746: 125
doi: 10.1016/j.jallcom.2018.02.298
|
86 |
Fujieda T, Chen M C, Shiratori H, et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting [J]. Addit. Manuf., 2019, 25: 412
|
87 |
Karlsson D, Marshal A, Johansson F, et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy—A comparison between selective laser melting and induction melting [J]. J. Alloys Compd., 2019, 784: 195
doi: 10.1016/j.jallcom.2018.12.267
|
88 |
Zhang H, Zhao Y Z, Cai J L, et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing [J]. Mater. Des., 2021, 201: 109462
doi: 10.1016/j.matdes.2021.109462
|
89 |
Sun Z J, Tan X P, Wang C C, et al. Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: Example of an Al x CoCrFeNi high-entropy alloy [J]. Acta Mater., 2021, 204: 116505
doi: 10.1016/j.actamat.2020.116505
|
90 |
Luo S C, Gao P, Yu H C, et al. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical behavior [J]. J. Alloys Compd., 2019, 771: 387
doi: 10.1016/j.jallcom.2018.08.290
|
91 |
Luo S C, Zhao C Y, Su Y, et al. Selective laser melting of dual phase AlCrCuFeNi x high entropy alloys: Formability, heterogeneous microstructures and deformation mechanisms [J]. Addit. Manuf., 2020, 31: 100925
|
92 |
Wang Y, Li R D, Niu P D, et al. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting [J]. Intermetallics, 2020, 120: 106746
doi: 10.1016/j.intermet.2020.106746
|
93 |
Zhang M N, Zhou X L, Wang D F, et al. AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment [J]. Mater. Sci. Eng., 2019, A743: 773
|
94 |
Yao H L, Tan Z, He D Y, et al. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting [J]. J. Alloys Compd., 2020, 813: 152196
doi: 10.1016/j.jallcom.2019.152196
|
95 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
|
96 |
Yang X G, Zhou Y, Xi S Q, et al. Grain-anisotropied high-strength Ni6Cr4WFe9Ti high entropy alloys withoutstanding tensile ductility [J]. Mater. Sci. Eng., 2019, A767: 138382
|
97 |
Yang X G, Zhou Y, Xi S Q, et al. Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility [J]. Mater. Sci. Eng., 2019, A767: 138394
|
98 |
Li B, Qian B, Xu Y, et al. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing [J]. Mater. Lett., 2019, 252: 88
doi: 10.1016/j.matlet.2019.05.108
|
99 |
Li B, Zhang L, Xu Y, et al. Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: Process, particle behavior and effects [J]. Powd. Technol., 2020, 360: 509
doi: 10.1016/j.powtec.2019.10.068
|
100 |
Kim Y K, Kim M C, Lee K A. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97: 10
doi: 10.1016/j.jmst.2021.04.030
|
101 |
Pauly S, Löber L, Petters R, et al. Processing metallic glasses by selective laser melting [J]. Mater. Today, 2013, 16: 37
doi: 10.1016/j.mattod.2013.01.018
|
102 |
Li N, Zhang J J, Xing W, et al. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness [J]. Mater. Des., 2018, 143: 285
doi: 10.1016/j.matdes.2018.01.061
|
103 |
Gao X H, Lin X, Yu J, et al. Selective laser melting (SLM) of in-situ beta phase reinforced Ti/Zr-based bulk metallic glass matrix composite [J]. Scr. Mater., 2019, 171: 21
doi: 10.1016/j.scriptamat.2019.06.007
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|