Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (12): 1701-1709    DOI: 10.11900/0412.1961.2022.00412
Research paper Current Issue | Archive | Adv Search |
Phase Stability, Magnetism, and Mechanical Properties of A2BTi: First-Principles Calculations and Experimental Studies
YANG Jinhan1, YAN Haile1(), LIU Haoxuan1, ZHAO Ying1, YANG Yiqiao2, ZHAO Xiang1, ZUO Liang1
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Analytical and Testing Center, Northeastern University, Shenyang 110819, China
Cite this article: 

YANG Jinhan, YAN Haile, LIU Haoxuan, ZHAO Ying, YANG Yiqiao, ZHAO Xiang, ZUO Liang. Phase Stability, Magnetism, and Mechanical Properties of A2BTi: First-Principles Calculations and Experimental Studies. Acta Metall Sin, 2024, 60(12): 1701-1709.

Download:  HTML  PDF(2213KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Exploring novel magnetic Heusler alloys is of great significance for the development of a new generation of smart sensing materials. The A2BC type magnetic alloy, which comprises transition magnetic metal elements A and B and III-V main group element C (p-block element), has gained significant attention due to its various physical and chemical properties, including semimetallic magnetism, ferromagnetic shape memory effect, multicaloric effect, and superconductive effect. In this study, eight new A2BTi type magnetic functional alloys, including three Co-based alloys (Co2MnTi, Co2FeTi, and Co2NiTi), three Fe-based alloys (Fe2MnTi, Fe2CoTi, and Fe2NiTi), and two Ni-based alloys (Ni2FeTi and Ni2CoTi), were investigated for their phase stability against tetragonal distortion using first-principles calculation. The underlying mechanism for the stability of the L21 phase was discussed. The results show that valence electron concentration and magnetism are the key parameters in determining the structural stability of L21 phase in A2BTi type alloys. Co2NiTi, Fe2NiTi, and Ni2CoTi alloy samples, whose L21 structure is an unstable phase, were prepared, and their crystal structure, phase transformation, magnetic properties, electrical resistance, and mechanical properties were investigated experimentally. The results show that at 298 K, Co2NiTi is composed of an ordered face-centered cubic L12 structured matrix phase and a hexagonal Co3Ti-type second phase, Fe2NiTi is composed of a hexagonal Fe2Ti-type matrix phase and a tetragonal FeNi-type second phase, and Ni2CoTi has a single hexagonal Ni3Ti-type structure. The fact that no compound undergoes a first-order structural phase transition may be due to the weak stabilities of their L21 phases. Fe2NiTi and Ni2CoTi have strong magnetic properties and undergo a second-order Curie magnetic transition during cooling. Fe2NiTi has high compressive strength (1280 MPa), moderate compressive strain (5%), and large resistance (120 μΩ·cm), while Co2NiTi and Ni2CoTi have excellent compressive plasticity and small resistance. This phenomenon may be related to the different proportions of metallic and covalent bonding caused by the difference in valence electron concentration of the three alloys.

Key words:  magnetic functional material      magnetic shape memory alloy      Heusler alloy      martensitic transformation      first-principles calculation     
Received:  25 August 2022     
ZTFLH:  TG139.6  
Fund: Fundamental Research Funds for the Central Universities(N2202015);Fundamental Research Funds for the Central Universities(N2230002)
Corresponding Authors:  YAN Haile, associate professor, Tel: 13909823853, E-mail: yanhaile@mail.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00412     OR     https://www.ams.org.cn/EN/Y2024/V60/I12/1701

Fig.1  Evolutions of total energy for Co2BTi (B = Mn, Fe, Ni) (a), Fe2BTi (B = Mn, Co, Ni) (b), and Ni2BTi (B = Mn, Co, Fe) (c) plotted as a function of tetragonal ratio c / a (a, c are lattice constants. For comparison, the total energies of the L21 structure for all systems are normalized to 0. The structures with c / a = 1.0 and c / a = 1.414 indicate the L21 (ordered bcc structure) and the ordered fcc structure, respectively. eV/f.u. means eV per formular unit. The arrows in Figs.1a and b indicate the c / a ratio of the tetragonal Ni2MnTi and Fe2NiTi lattices with the minimum total energy, respectively)
ElementConfiguration of valence electronNumber of valence electron
Ti3d34s14
Mn3d64s17
Fe3d74s18
Co3d84s19
Ni3d94s110
Table 1  Valence electron configurations and valence electron numbers of the studied elements
Fig.2  Distribution diagram of average atomic magnetic moment and average valence electron concentration (VEC) (Hollow dots and solid dots represent the alloy in which L21 phase is and isn't the most stable phase, respectively)
Fig.3  XRD spectra (a1-c1) and backscattered electron (BSE) images (a2-c2) for Co2NiTi (a1, a2), Fe2NiTi (b1, b2), and Ni2CoTi (c1, c2) alloys at room temperature (Insets in Figs.3a1, b1, and c1 show the crystal structural models of the matrix phase and the precipitated phases of Co2NiTi, Fe2NiTi, and Ni2CoTi alloys, respectively)
Fig.4  Temperature-dependent magnetization (M(T)) (a1-c1) and DSC (a2-c2) curves for Co2NiTi (a1, a2), Fe2NiTi (b1, b2), and Ni2CoTi (c1, c2) alloys (Inset in Fig.4a1 is an enlarged M(T) curve at the low-temperature range under the magnetic field interlity H = 0.01 T; insets in Figs.4a2-c2 are the DSC curves measured at the high-temperature range (300 K to the melting point). ZFC—zero-field-cooling, ZC—field-cooling, FH—field-heating)
Fig.5  Dependence of magnetization on magnetic field intensity (M(H)) curves (a), electronic resistance (b), and compression curves (c) for Co2NiTi, Fe2NiTi, and Ni2CoTi alloys
1 Zuo L, Li Z B, Yan H L, et al. Texturation and functional behaviors of polycrystalline Ni-Mn-X phase transformation alloys [J]. Acta Metall. Sin., 2021, 57: 1396
左 良, 李宗宾, 闫海乐 等. 多晶Ni-Mn-X相变合金的织构化与功能行为 [J]. 金属学报, 2021, 57: 1396
2 Karaca H E, Karaman I, Basaran B, et al. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys——A new actuation mechanism with large work output [J]. Adv. Funct. Mater., 2009, 19: 983
3 Graf T, Felser C, Parkin S S P. Simple rules for the understanding of Heusler compounds [J]. Prog. Solid State Chem., 2011, 39: 1
4 Yan H L, Zhang Y D, Esling C, et al. Determination of strain path during martensitic transformation in materials with two possible transformation orientation relationships from variant self-organization [J]. Acta Mater., 2021, 202: 112
5 Yan H L, Zhang Y D, Xu N, et al. Crystal structure determination of incommensurate modulated martensite in Ni-Mn-In Heusler alloys [J]. Acta Mater., 2015, 88: 375
6 Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation [J]. Nature, 2006, 439: 957
7 Ullakko K, Huang J K, Kantner C, et al. Large magnetic-field-induced strains in Ni2MnGa single crystals [J]. Appl. Phys. Lett., 1996, 69: 1966
8 Li Z, Xu C, Xu K, et al. Study of martensitic transformation and strain behavior in Ni50 - x Co x Mn39Sn11 (x = 0, 2, 4, 6) Heusler alloys [J]. Acta Metall. Sin., 2015, 51: 1010
李 哲, 徐 琛, 徐 坤 等. Ni50 - x Co x Mn39Sn11 (x = 0, 2, 4, 6) Heusler合金的马氏体相变和应变行为研究 [J]. 金属学报, 2015, 51: 1010
9 Yan H L, Liu H X, Zhao Y, et al. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74: 27
10 Wei Z Y, Liu E K, Chen J H, et al. Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases [J]. Appl. Phys. Lett., 2015, 107: 022406
11 Wei Z Y, Liu E K, Li Y, et al. Magnetostructural martensitic transformations with large volume changes and magneto-strains in all-d-metal Heusler alloys [J]. Appl. Phys. Lett., 2016, 109: 071904
12 Wei Z Y, Sun W, Shen Q, et al. Elastocaloric effect of all-d-metal Heusler NiMnTi(Co) magnetic shape memory alloys by digital image correlation and infrared thermography [J]. Appl. Phys. Lett., 2019, 114: 101903
13 Yan H L, Wang L D, Liu H X, et al. Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni-Mn-Ti alloy: Experimental and ab-initio studies [J]. Mater. Des., 2019, 184: 108180
14 de Paula V G, Reis M S. All-d-metal full Heusler alloys: A novel class of functional materials [J]. Chem. Mater., 2021, 33: 5483
15 Liu S L, Xuan H C, Cao T, et al. Magnetocaloric and elastocaloric effects in all-d-metal Ni37Co9Fe4Mn35Ti15 magnetic shape memory alloy [J]. Phys. Status Solidi, 2019, 216A: 1900563
16 Aznar A, Gràcia-Condal A, Planes A, et al. Giant barocaloric effect in all-d-metal Heusler shape memory alloys [J]. Phys. Rev. Mater., 2019, 3: 044406
17 Cong D Y, Xiong W X, Planes A, et al. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys [J]. Phys. Rev. Lett., 2019, 122: 255703
18 Shen Y, Wei Z Y, Sun W, et al. Large elastocaloric effect in directionally solidified all-d-metal Heusler metamagnetic shape memory alloys [J]. Acta Mater., 2020, 188: 677
doi: 10.1016/j.actamat.2020.02.045
19 Ni Z N, Ma Y X, Liu X T, et al. Electronic structure, magnetic properties and martensitic transformation in all-d-metal Heusler alloys Zn2 YMn (Y = Fe, Co, Ni, Cu) [J]. J. Magn. Magn. Mater., 2018, 451: 721
20 Liu K, Ma S C, Ma C C, et al. Martensitic transformation and giant magneto-functional properties in all-d-metal Ni-Co-Mn-Ti alloy ribbons [J]. J. Alloys Compd., 2019, 790: 78
21 Zhang F Q, Batashev I, van Dijk N, et al. Reduced hysteresis and enhanced giant magnetocaloric effect in B-doped all-d-metal Ni-Co-Mn-Ti-based Heusler materials [J]. Phys. Rev. Appl., 2022, 17: 054032
22 Taubel A, Beckmann B, Pfeuffer L, et al. Tailoring magnetocaloric effect in all-d-metal Ni-Co-Mn-Ti Heusler alloys: A combined experimental and theoretical study [J]. Acta Mater., 2020, 201: 425
23 Xiong C C, Bai J, Li Y S, et al. First-principles investigation on phase stability, elastic and magnetic properties of boron doping in Ni-Mn-Ti alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1175
24 Sun X M, Cong D Y, Ren Y, et al. Magnetic-field-induced strain-glass-to-martensite transition in a Fe-Mn-Ga alloy [J]. Acta Mater., 2020, 183: 11
25 Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond [J]. J. Comput. Chem., 2008, 29: 2044
26 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
27 Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
28 Yan H L, Liu H X, Huang X M, et al. First-principles investigation of Mg substitution for Ga on martensitic transformation, magnetism and electronic structures in Ni2MnGa [J]. J. Alloys Compd., 2020, 843: 156049
29 Huang X M, Zhao Y, Yan H L, et al. A first-principle assisted framework for designing high elastocaloric Ni-Mn-based magnetic shape memory alloy [J]. J. Mater. Sci. Technol., 2023, 134: 151
30 Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
31 Petříček V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: General features [J]. Z. Kristallogr. Cryst. Mater., 2014, 229: 345
32 Grimvall G, Magyari-Köpe B, Ozoliņš V, et al. Lattice instabilities in metallic elements [J]. Rev. Mod. Phys., 2012, 84: 945
33 Yan H L, Zhao Y, Liu H X, et al. Ab-initio revelation on the origins of Ti substitution for Ga, Mn and Ni on ferromagnetism, phase stability and elastic properties in Ni2MnGa [J]. J. Alloys Compd., 2020, 821: 153481
34 Bhattacharya K, Conti S, Zanzotto G, et al. Crystal symmetry and the reversibility of martensitic transformations [J]. Nature, 2004, 428: 55
35 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
36 Nguyen-Manh D, Pettifor D G. Electronic structure, phase stability and elastic moduli of AB transition metal aluminides [J]. Intermetallics, 1999, 7: 1095
37 Mizutani U. Hume-Rothery rules for structurally complex alloy phases [J]. MRS Bull., 2012, 37: 169
38 Massalski T B, Laughlin D E. The surprising role of magnetism on the phase stability of Fe (Ferro) [J]. Calphad, 2009, 33: 3
39 Körmann F, Hickel T, Neugebauer J. Influence of magnetic excitations on the phase stability of metals and steels [J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 77
40 Yan H L, Sánchez-Valdés C F, Zhang Y D, et al. Correlation between crystallographic and microstructural features and low hysteresis behavior in Ni50.0Mn35.25In14.75 melt-spun ribbons [J]. J. Alloys Compd., 2018, 767: 544
41 Yan H L, Zhao Y, Liu H X, et al. Occupation preferences and impacts of interstitial H, C, N, and O on magnetism and phase stability of Ni2MnGa magnetic shape memory alloys by first-principles calculations [J]. J. Appl. Phys., 2022, 131: 205101
42 Naohara T, Inoue A, Minemura T, et al. Microstructures, mechanical properties, and electrical resistivity of rapidly quenched Fe-Cr-Al alloys [J]. Metall. Mater. Trans., 1982, 13A: 337
43 Liu H X, Yan H L, Jia N, et al. Machine-learning-assisted discovery of empirical rule for inherent brittleness of full Heusler alloys [J]. J. Mater. Sci. Technol., 2022, 131: 1
44 Massalski T B, Mizutani U. Electronic structure of Hume-Rothery phases [J]. Prog. Mater. Sci., 1978, 22: 151
[1] ZHOU Yanyu, LI Jiangxu, LIU Chen, LAI Junwen, GAO Qiang, MA Hui, SUN Yan, CHEN Xingqiu. First-Principles Study of Projected Berry Phase and Hydrogen Evolution Catalysis in Pt7Sb[J]. 金属学报, 2024, 60(6): 837-847.
[2] ZHAO Jinbin, WANG Jiantao, HE Dongchang, LI Junlin, SUN Yan, CHEN Xing-Qiu, LIU Peitao. Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors[J]. 金属学报, 2024, 60(10): 1418-1428.
[3] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[5] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[6] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[8] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[9] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[10] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[12] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[13] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[14] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[15] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
No Suggested Reading articles found!