Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (11): 1429-1437    DOI: 10.11900/0412.1961.2021.00347
Overview Current Issue | Archive | Adv Search |
Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys
WANG Huiyuan(), XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng()
Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
Cite this article: 

WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys. Acta Metall Sin, 2021, 57(11): 1429-1437.

Download:  HTML  PDF(2067KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Wrought magnesium alloys have a wide range of applications by controlling the microstructure and optimizing the deformation process to improve the mechanical properties. Low-alloyed magnesium alloys have great advantages in formability, corrosion resistance, and light weight. Moreover, low alloying and high performance have become important trends in the development of wrought magnesium alloys. This study reviews the research progress of low-alloyed, high-strength, high-plasticity, and superplastic wrought magnesium alloys regarding alloy composition design, strengthening and toughening mechanisms, and processing technology. From the perspective of improving production efficiency and expanding application scope, the development trend of low-alloyed wrought magnesium alloys is proposed.

Key words:  wrought magnesium alloy      low alloying      high strength      high plasticity      superplasticity     
Received:  20 August 2021     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(U19A2084)
About author:  YANG Zhizheng, Tel: (0431)85095415, E-mail: yangzz@jlu.edu.cn
WANG Huiyuan, professor, Tel: (0431)85095415, E-mail: wanghuiyuan@jlu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00347     OR     https://www.ams.org.cn/EN/Y2021/V57/I11/1429

AlloyProcessing

Grain size

μm

UTS

MPa

YS

MPa

EL

%

Ref.
Mg-1.0Ca-1.0Al-0.2Zn-0.1MnExtrusion0.3747042511.1[6]
Mg-1.3Al-0.3Ca-0.4MnExtrusion1730628720.0[7]
Mg-1.0Zn-1.0Al-0.5Ca-0.4Mn-0.2CeRolling9.633227025.8[8]
Mg-0.13CaExtrusion1.2730029013.0[9]
Mg-1.02CaExtrusion0.843923772.0[9]
AZ31HRDSR0.64013827.3[10]
AZ31ECAP0.374453729.7[11]
AZ31ECAP1.7838515029.5[12]
AZ31ECAP + rolling-4103785.0[12]
AZ31ECAP + rolling + EPT1.243032012.9[12]
Mg-2Sn-2CaExtrusion0.324604431.2[13]
Mg-2Sn-2CaExtrusion0.484354203.0[13]
Mg-2Sn-2CaExtrusion0.653864145.8[13]
Table 1  High-strength low-alloyed wrought Mg alloys prepared by different processing methods[6-13]
Fig.1  HRTEM image taken from the [101ˉ0] direction of low content Mg-Al-Ca-Mn-Ag alloy (a) and corresponding SAED pattern (b) (The arrows in Figs.1a and b indicate the fine G.P. zone and the presence of the G.P. zone, respectively)
Fig.2  High-angle annular dark-field (HAADF)-scanning transmission electron microscopy (STEM) images of as-received (a), cold rolled (b, c), annealing at 150oC for 5 min (d), and 150oC for 15 min (e, f) in Mg-2.57Ag alloy[26]
Fig.3  Grain size distribution with <c + a> dislocations and deformation twins observed in the Mg-3Gd samples tensile deformed to failure (The <a> dislocations are not indicated in the figure for clarity. FG—fine grain, CG—coarse grain)[40]
Fig.4  EBSD inverse pole figure (IPF) maps, grain size distribution, and corresponding (0002) pole figures of ZTWX1100 samples with basal-random heterogeneous (BRH) texture (a) and basal texture (b), and corresponding tensile engineering stress-strain curves (c) and strain hardening rate versus true strain curves (d) (RD, TD, and ND represent the rolling, transverse and normal directions, respectively; σ and ε represent true stress and true strain, respectively)[43]
AlloyProcessing

Grain size

μm

Temperature

K

Strain rate

s-1

EL

%

Ref.
Mg-1.0Zn-0.45Ca-0.35Sn-0.2MnRolling4.05731.0 × 10-3410[45]
Mg-0.65MnExtrusion3.02981.0 × 10-5140[46]
AZ31Extrusion1.84233.3 × 10-5320[47]
ZK30ExtrusionBimodal7231.0 × 10-2360[48]
AZ31Rolling1306483.0 × 10-5196[49]
AZ31ECAP0.74231.0 × 10-4460[50]
AZ31MDF3.44235.0 × 10-5320[51]
Mg-2.5BiExtrusion3.02981.0 × 10-3170[52]
Mg-2.5BiExtrusion3.02981.0 × 10-5420[52]
Table 2  Superplastic low-alloyed wrought magnesium alloys prepared by different processing methods[45-52]
Fig.5  HAADF-STEM image (a) and corresponding EDS line-scan analysis (b) of the ZXTM1000 alloy before tension
1 Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
2 Wu G H, Chen Y S, Ding W J. Current research and future prospect on microstructures controlling of high performance magnesium alloys during solidification [J]. Acta Metall. Sin., 2018, 54: 637
吴国华,陈玉狮,丁文江. 高性能镁合金凝固组织控制研究现状与展望 [J]. 金属学报, 2018, 54: 637
3 Zeng Z R, Zhu Y M, Liu R L, et al. Achieving exceptionally high strength in Mg-3Al-1Zn-0.3Mn extrusions via suppressing intergranular deformation [J]. Acta Mater., 2018, 160: 97
4 Lee S W, Kim S H, Park S H. Microstructural characteristics of AZ31 alloys rolled at room and cryogenic temperatures and their variation during annealing [J]. J. Magnes. Alloy., 2020, 8: 537
5 Hua Z M, Wang B Y, Wang C, et al. Development of low-alloyed Mg-Zn-Ca-Sn-Mn alloy with high strength-ductility synergy by sub-rapid solidification and hot rolling [J]. J. Alloys Compd., 2021, 855: 157317
6 Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
7 Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys [J]. Acta Mater., 2017, 130: 261
8 Shi R H, Miao J S, Avey T, et al. A new magnesium sheet alloy with high tensile properties and room-temperature formability [J]. Sci. Rep., 2020, 10: 10044
9 Pan H C, Yang C L, Yang Y T, et al. Ultra-fine grain size and exceptionally high strength in dilute Mg-Ca alloys achieved by conventional one-step extrusion [J]. Mater. Lett., 2019, 237: 65
10 Kim W J, Lee Y G, Lee M J, et al. Exceptionally high strength in Mg-3Al-1Zn alloy processed by high-ratio differential speed rolling [J]. Scr. Mater., 2011, 65: 1105
11 Ding S X, Lee W T, Chang C P, et al. Improvement of strength of magnesium alloy processed by equal channel angular extrusion [J]. Scr. Mater., 2008, 59: 1006
12 Zhao G W, Fan J F, Zhang H, et al. Exceptional mechanical properties of ultra-fine grain AZ31 alloy by the combined processing of ECAP, rolling and EPT [J]. Mater. Sci. Eng., 2018, A731: 54
13 Pan H C, Qin G W, Huang Y M, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength [J]. Acta Mater., 2018, 149: 350
14 Oh-ishi K, Watanabe R, Mendis C L, et al. Age-hardening response of Mg-0.3at.%Ca alloys with different Zn contents [J]. Mater. Sci. Eng., 2009, A526: 177
15 Langelier B, Wang X, Esmaeili S. Evolution of precipitation during non-isothermal ageing of an Mg-Ca-Zn alloy with high Ca content [J]. Mater. Sci. Eng., 2012, A538: 246
16 Oh J C, Ohkubo T, Mukai T, et al. TEM and 3DAP characterization of an age-hardened Mg-Ca-Zn alloy [J]. Scr. Mater., 2005, 53: 675
17 Ma H T, Yuan R, Xie Y P, et al. The role of Ag, Ca, Zr and Al in strengthening effects of ZK series alloys by altering G.P. zones stability [J]. Acta Mater., 2018, 147: 42
18 Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
19 Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys [J]. Scr. Mater., 2003, 48: 1009
20 Wang F L, Bhattacharyya J J, Agnew S R. Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals, application to magnesium alloys [J]. Mater. Sci. Eng., 2016, A666: 114
21 Fan H D, Zhu Y X, El-Awady J A, et al. Precipitation hardening effects on extension twinning in magnesium alloys [J]. Int. J. Plast., 2018, 106: 186
22 Hidalgo-Manrique P, Robson J D, Pérez-Prado M T. Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: A quantitative study [J]. Acta Mater., 2017, 124: 456
23 Mendis C L, Oh-ishi K, Ohkubo T, et al. Precipitation of prismatic plates in Mg-0.3Ca alloys with In additions [J]. Scr. Mater., 2011, 64: 137
24 Bian M Z, Sasaki T T, Nakata T, et al. Bake-hardenable Mg-Al-Zn-Mn-Ca sheet alloy processed by twin-roll casting [J]. Acta Mater., 2018, 158: 278
25 Hua Z M, Li M X, Wang C, et al. Pre-strain mediated fast natural aging in a dilute Mg-Zn-Ca-Sn-Mn alloy [J]. Scr. Mater., 2021, 200: 113924
26 Xiao L R, Chen X F, Cao Y, et al. Solute segregation assisted nanocrystallization of a cold-rolled Mg-Ag alloy during annealing [J]. Scr. Mater., 2020, 177: 69
27 Hwang J H, Zargaran A, Park G, et al. Effect of 1Al addition on deformation behavior of Mg [J]. J. Magnes. Alloy., 2021, 9: 489
28 Sabat R K, Brahme A P, Mishra R K, et al. Ductility enhancement in Mg-0.2%Ce alloys [J]. Acta Mater., 2018, 161: 246
29 Li J R, Zhang A Y, Pan H C, et al. Effect of extrusion speed on microstructure and mechanical properties of the Mg-Ca binary alloy [J]. J. Magnes. Alloy., 2021, 9: 1297
30 Xia N, Wang C, Gao Y P, et al. Enhanced ductility of Mg-1Zn-0.2Zr alloy with dilute Ca addition achieved by activation of non-basal slip and twinning [J]. Mater. Sci. Eng., 2021, A813: 141128
31 Yan H, Chen R S, Zheng N, et al. Effects of trace Gd concentration on texture and mechanical properties of hot-rolled Mg-2Zn-xGd sheets [J]. J. Magnes. Alloy., 2013, 1: 23
32 Zhao T S, Hu Y B, He B, et al. Effect of manganese on microstructure and properties of Mg-2Gd magnesium alloy [J]. Mater. Sci. Eng., 2019, A765: 138292
33 Lu W L, Yue R, Miao H W, et al. Enhanced plasticity of magnesium alloy micro-tubes for vascular stents by double extrusion with large plastic deformation [J]. Mater. Lett., 2019, 245: 155
34 Zhu G M, Wang L Y, Zhou H, et al. Improving ductility of a Mg alloy via non-basal <a> slip induced by Ca addition [J]. Int. J. Plast., 2019, 120: 164
35 Zhang Y, Jiang H T, Kang Q, et al. Microstructure evolution and mechanical property of Mg-3Al alloys with addition of Ca and Gd during rolling and annealing process [J]. J. Magnes. Alloy., 2020, 8: 769
36 Zeng Z R, Bian M Z, Xu S W, et al. Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet [J]. Mater. Sci. Eng., 2016, A674: 459
37 Zeng Z R, Zhu Y M, Xu S W, et al. Texture evolution during static recrystallization of cold-rolled magnesium alloys [J]. Acta Mater., 2016, 105: 479
38 Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
39 Lentz M, Risse M, Schaefer N, et al. Strength and ductility with {101¯1}-{101¯2} double twinning in a magnesium alloy [J]. Nat. Commun., 2016, 7: 11068
40 Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd [J]. Acta Mater., 2020, 183: 398
41 Kim W J, Lee J B, Kim W Y, et al. Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling [J]. Scr. Mater., 2007, 56: 309
42 Su J,Kabir A S H, Sanjari M, et al. Correlation of static recrystallization and texture weakening of AZ31 magnesium alloy sheets subjected to high speed rolling [J]. Mater. Sci. Eng., 2016, A674: 343
43 Wang C, Ning H, Liu S, et al. Enhanced ductility and strength of Mg-1Zn-1Sn-0.3Y-0.2Ca alloy achieved by novel micro-texture design [J]. Scr. Mater., 2021, 204: 114119
44 Masuda H, Sato E. Diffusional and dislocation accommodation mechanisms in superplastic materials [J]. Acta Mater., 2020, 197: 235
45 Hua Z M, Wang B Y, Wang C, et al. Solute segregation assisted superplasticity in a low-alloyed Mg-Zn-Ca-Sn-Mn alloy [J]. Materialia, 2020, 14: 100918
46 Somekawa H, Singh A, Mukai T, et al. Effect of alloying elements on room temperature tensile ductility in magnesium alloys [J]. Philos. Mag., 2016, 96: 2671
47 Kim B, Park C H, Kim H S, et al. Grain refinement and improved tensile properties of Mg-3Al-1Zn alloy processed by low-temperature indirect extrusion [J]. Scr. Mater., 2014, 76: 21
48 Álvarez-Leal M, Orozco-Caballero A, Carreño F, et al. Superplasticity in a commercially extruded ZK30 magnesium alloy [J]. Mater. Sci. Eng., 2018, A710: 240
49 Watanabe H, Tsutsui H, Mukai T, et al. Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperatures [J]. Int. J. Plast., 2001, 17: 387
50 Lin H K, Huang J C, Langdon T G. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP [J]. Mater. Sci. Eng., 2005, A402: 250
51 Zhang Z R, Xing J, Yang X, et al. Anisotropy of low temperature superplasticity of fine grained magnesium alloy AZ31 processed by multidirectional forging [J]. Mater. Sci. Technol., 2009, 25: 1442
52 Somekawa H, Singh A. Superior room temperature ductility of magnesium dilute binary alloy via grain boundary sliding [J]. Scr. Mater., 2018, 150: 26
53 Wang H Y, Zhang H, Xu X Y, et al. Current research and future prospect on microstructure stability of superplastic light alloys [J]. Acta Metall. Sin., 2018, 54: 1618
王慧远, 张 行, 徐新宇等. 超塑性轻合金组织稳定性的研究进展及展望 [J]. 金属学报, 2018, 54: 1618
54 Kong T, Kwak B J, Kim J, et al. Tailoring strength-ductility balance of caliber-rolled AZ31 Mg alloy through subsequent annealing [J]. J. Magnes. Alloy, 2020, 8: 163
55 Zhang S Y, Wang C, Ning H, et al. Relieving segregation in twin-roll cast Mg-8Al-2Sn-1Zn alloys via controlled rolling [J]. J. Magnes. Alloy., 2021, 9: 254
56 Neh K, Ullmann M, Oswald M, et al. Twin roll casting and strip rolling of several magnesium Alloys [J]. Mater. Today: Proc., 2015, 2: S45
57 Bae J H, Shim M S, Suh B C, et al. Segregation in twin-roll cast Mg alloy and its suppression through alloy design [J]. Mater. Lett., 2014, 132: 361
58 Lee J H, Lee J U, Kim S H, et al. Dynamic recrystallization behavior and microstructural evolution of Mg alloy AZ31 through high-speed rolling [J]. J. Mater. Sci. Technol., 2018, 34: 1747
59 Su J, Sanjari M, Kabir A S H, et al. Characteristics of magnesium AZ31 alloys subjected to high speed rolling [J]. Mater. Sci. Eng., 2015, A636: 582
60 Jiang M G, Xu C, Nakata T, et al. High-speed extrusion of dilute Mg-Zn-Ca-Mn alloys and its effect on microstructure, texture and mechanical properties [J]. Mater. Sci. Eng., 2016, A678: 329
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[5] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[6] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[7] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[8] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[9] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[10] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[11] LU Bin, CHEN Furong, ZHI Jianguo, GENG Ruming. Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology[J]. 金属学报, 2020, 56(9): 1206-1216.
[12] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[13] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[14] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[15] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
No Suggested Reading articles found!