|
|
|
| Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface |
XIA Dahai( ), JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin( ) |
| Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China |
|
Cite this article:
XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface. Acta Metall Sin, 2023, 59(2): 297-308.
|
|
|
Abstract A seawater corrosion test platform to simulate the dynamic seawater/air interface is constructed, comprising an electric putter, a time relay, and four corrosion electrochemical sensors. The localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface is investigated by corrosion potential monitoring, electrochemical impedance spectroscopy (EIS), electrochemical noise (EN) measurements, and the analysis of the surface and cross-section morphology. The differences in the corrosion behavior at the seawater/air interfacial region and that of full immersion region are discussed. The results showed that the corrosion products at the dynamic seawater/air interfacial region are continuously distributed, which is mainly due to the dissolved Al3+ flowing from the pits and reacting with the oxygen in the dynamic seawater/air interfacial region. The distribution of corrosion products in the entire leaching area is more dispersed. As aluminum alloy is immersed and removed from water periodically, the corrosion potential fluctuates periodically with an amplitude of 5-10 mV. Due to the high corrosion potential in the seawater/air interfacial region, the aluminum alloy above the waterline behaves as the cathode, and that below the waterline acts as the anode. However, because of the subtle difference in the corrosion potential, the galvanic corrosion effect is not obvious. The results of EIS revealed that the high-frequency capacitive arc radius of both seawater/air interfacial region and full immersion zone increased first and then decreased, and the corrosion product film in the interface zone had better corrosion resistance than that in the full immersion zone. The results of the EN test showed that the fluctuation amplitude of current noise decreased first and then increased, indicating that the local corrosion sensitivity decreased first and then increased. The slope of the high-frequency linear region of the power spectral density of current noise was less than -20 dB/dec, indicating that the corrosion type was local corrosion. The pit size at the seawater/air interface was much smaller than that in full immersion region, because the oxygen in the seawater/air interface region could be easily reduced within the pits by consuming H+, thereby increasing the pH value within the pits.
|
|
Received: 27 April 2022
|
|
|
| Fund: National Natural Science Foundation of China(52171077);National Natural Science Foundation of China(52031007) |
| 1 |
Deng Y L, Zhang X M. Development of aluminium and aluminium alloy[J]. Chin. J. Nonferrous Met., 2019, 29: 2115
|
|
邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29: 2115
|
| 2 |
Huang Y B, Zhou K K, Ba G Z, et al. The corrosion status of amphibious vehicles along the coast and integrated corrosion control technology[J]. Acta Armamentarii, 2016, 37: 1291
|
|
黄燕滨, 周科可, 巴国召 等. 沿海两栖车辆腐蚀现状及腐蚀综合控制技术[J]. 兵工学报, 2016, 37: 1291
doi: 10.3969/j.issn.1000-1093.2016.07.018
|
| 3 |
Jiang W, Wang J E. Analysis of choosing aluminum on mainstructure of amphibious aircraft[J]. Civ. Aircr. Des. Res., 2015, (3): 60
|
|
江 武, 王金娥. 某型水陆两栖飞机主结构铝合金材料选用分析[J]. 民用飞机设计与研究, 2015, (3): 60
|
| 4 |
Zhang B B, Xu W C, Zhu Q J, et al. Mechanically robust superhydrophobic porous anodized AA5083 for marine corrosion protection[J]. Corros. Sci., 2019, 158: 108083
doi: 10.1016/j.corsci.2019.06.031
|
| 5 |
Chen Y L, Wu X J, Zhang Y, et al. Corrosion behavior and DFR degradation law of 2024-T3 aluminium alloy in different surface state[J]. Equip. Environ. Eng., 2020, 17(6): 44
|
|
陈跃良, 吴省均, 张 勇 等. 不同表面状态2024-T3铝合金腐蚀行为及DFR退化规律[J]. 装备环境工程, 2020, 17(6): 44
|
| 6 |
Sun S K, Sun Z H, Tang Z H, et al. Corrosion control and protection technology of carrier-borne aircraft[J]. Equip. Environ. Eng., 2017, 14(3): 18
|
|
孙盛坤, 孙志华, 汤智慧 等. 舰载飞机腐蚀控制与防护技术[J]. 装备环境工程, 2017, 14(3): 18
|
| 7 |
Xia D H, Mao Y C, Zhu Y, et al. A novel approach used to study the corrosion susceptibility of metallic materials at a dynamic seawater/air interface[J]. Corros. Commun., 2022, 6: 62
doi: 10.1016/j.corcom.2022.03.001
|
| 8 |
Melchers R E, Jeffrey R. Corrosion of long vertical steel strips in the marine tidal zone and implications for ALWC[J]. Corros. Sci., 2012, 65: 26
doi: 10.1016/j.corsci.2012.07.025
|
| 9 |
Li X J, Gui F, Cong H B, et al. Examination of mechanisms for liquid-air-interface corrosion of steel in high level radioactive waste simulants[J]. J. Electrochem. Soc., 2013, 160: C521
doi: 10.1149/2.029311jes
|
| 10 |
Li S X, Teague M T, Doll G L, et al. Interfacial corrosion of copper in concentrated chloride solution and the formation of copper hydroxychloride[J]. Corros. Sci., 2018, 141: 243
doi: 10.1016/j.corsci.2018.06.037
|
| 11 |
Huang G Q. Corrosion of alumimium alloys in marine environments (Ⅰ)—A summary of 16 year exposure testing in seawater tide zone[J]. Corros. Prot., 2002, 23: 18
|
|
黄桂桥. 铝合金在海洋环境中的腐蚀研究(Ⅰ)—海水潮汐区16年暴露试验总结[J]. 腐蚀与防护, 2002, 23: 18
|
| 12 |
Huang G Q. Corrosion of aluminium alloys in marine environment (Ⅱ)—A summary of 16 years exposure testing in seawater full immersion zone[J]. Corros. Prot., 2002, 23: 47
|
|
黄桂桥. 铝合金在海洋环境中的腐蚀研究(Ⅱ)—海水全浸区16年暴露试验总结[J]. 腐蚀与防护, 2002, 23: 47
|
| 13 |
Huang G Q. Corrosion of aluminium alloys in marine environment (III)—A summary of 16 years exposure testing in splash zone[J]. Corros. Prot., 2003, 24: 47
|
|
黄桂桥. 铝合金在海洋环境中的腐蚀研究(III)—海水飞溅区16年暴露试验总结[J]. 腐蚀与防护, 2003, 24: 47
|
| 14 |
Jeffrey R, Melchers R E. Corrosion of vertical mild steel strips in seawater[J]. Corros. Sci., 2009, 51: 2291
doi: 10.1016/j.corsci.2009.06.020
|
| 15 |
Zhao L, Mu X, Dong J H, et al. Study on the galvanic current of corrosion behavior for AH32 long-scale specimen in simulated tidal zone[J]. Acta Metall. Sin., 2017, 53: 1445
|
|
赵 林, 穆 鑫, 董俊华 等. AH32长尺试样在模拟海洋潮差区腐蚀行为的电偶电流研究[J]. 金属学报, 2017, 53: 1445
|
| 16 |
Yu X Y, Xu Y Z, Zhu Y S, et al. Water-line corrosion behavior measured by electrical resistance method and multi-electrode technique[J]. Corros. Prot., 2021, 42(10): 13
|
|
余晓毅, 徐云泽, 朱烨森 等. 基于电阻-多电极联合测量的水线腐蚀行为[J]. 腐蚀与防护, 2021, 42(10): 13
|
| 17 |
Chang A L, Song S Z. A preliminary on corrosion monitoring and detecting of metal structure in simulated sea splash zone[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 247
|
|
常安乐, 宋诗哲. 模拟海洋环境浪花飞溅区的金属构筑物腐蚀监检测[J]. 中国腐蚀与防护学报, 2012, 32: 247
|
| 18 |
Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements[J]. Electrochim. Acta, 2020, 354: 136747
doi: 10.1016/j.electacta.2020.136747
|
| 19 |
Chen Y M, Nguyen A S, Orazem M E, et al. Identification of resistivity distributions in dielectric layers by measurement model analysis of impedance spectroscopy[J]. Electrochim. Acta, 2016, 219: 312
doi: 10.1016/j.electacta.2016.09.136
|
| 20 |
Ma C, Wang Z Q, Behnamian Y, et al. Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods[J]. Measurement, 2019, 138: 54
doi: 10.1016/j.measurement.2019.02.027
|
| 21 |
Xia D H, Behnamian Y. Electrochemical noise: a review of experimental setup, instrumentation and DC removal[J]. Russ. J. Electrochem., 2015, 51: 593
doi: 10.1134/S1023193515070071
|
| 22 |
Xia D H, Song S Z, Behnamian Y, et al. Review-Electrochemical noise applied in corrosion science: Theoretical and mathematical models towards quantitative analysis[J]. J. Electrochem. Soc., 2020, 167: 081507
|
| 23 |
Xia D H, Song S Z, Behnamian Y. Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms[J]. Corros. Eng. Sci. Technol., 2016, 51: 527
|
| 24 |
Chakri S, Frateur I, Orazem M E, et al. Improved EIS analysis of the electrochemical behaviour of carbon steel in alkaline solution[J]. Electrochim. Acta, 2017, 246: 924
doi: 10.1016/j.electacta.2017.06.096
|
| 25 |
Wei Y J, Xia D H, Song S Z. Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis[J]. Russ. J. Electrochem., 2016, 52: 560
doi: 10.1134/S1023193516060124
|
| 26 |
Ji Y Y, Xu Y Z, Zhang B B, et al. Review of micro-scale and atomic-scale corrosion mechanisms of second phases in aluminum alloys[J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 3205
doi: 10.1016/S1003-6326(21)65727-8
|
| 27 |
Zhu Y K, Sun K, Garves J, et al. Micro- and nano-scale intermetallic phases in AA2070-T8 and their corrosion behavior[J]. Electrochim. Acta, 2019, 319: 634
doi: 10.1016/j.electacta.2019.05.028
|
| 28 |
Zhu Y K, Frankel G S. Effect of major intermetallic particles on localized corrosion of AA2060-T8[J]. Corrosion, 2019, 75: 29
doi: 10.5006/2867
|
| 29 |
Li Y, Li K, Li L D, et al. Corrosion behavior of 3A12, 5052, 6063 aluminum alloys in coastal atmosphere[J]. Corros. Prot., 2019, 40: 490
|
|
李 一, 李 坤, 李立东 等. 3A12、5052、6063铝合金在沿海大气环境中的腐蚀行为[J]. 腐蚀与防护, 2019, 40: 490
|
| 30 |
Szklarska-Smialowska Z. Pitting corrosion of aluminum[J]. Corros. Sci., 1999, 41: 1743
doi: 10.1016/S0010-938X(99)00012-8
|
| 31 |
Hagyard T, Williams J R. Potential of aluminium in aqueous chloride solutions. Part 1[J]. Trans. Faraday Soc., 1961, 57: 2288
doi: 10.1039/tf9615702288
|
| 32 |
Yu Y J, Li Y. New insight into the negative difference effect in aluminium corrosion using in-situ electrochemical ICP-OES[J]. Corros. Sci., 2020, 168: 108568
doi: 10.1016/j.corsci.2020.108568
|
| 33 |
Xing P, Lu L, Li X G. Oxygen-concentration cell induced corrosion of E690 steel for ocean platform[J]. Chin. J. Mater. Res., 2016, 30: 241
doi: 10.11901/1005.3093.2015.507
|
|
邢 佩, 卢 琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究[J]. 材料研究学报, 2016, 30: 241
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|