Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (4): 539-548    DOI: 10.11900/0412.1961.2019.00419
Current Issue | Archive | Adv Search |
Systematical Innovation of Heat Resistant Materials Used for 630~700 ℃ Advanced Ultra-Supercritical (A-USC)Fossil Fired Boilers
LIU Zhengdong(),CHEN Zhengzong,HE Xikou,BAO Hansheng
China Iron and Steel Research Institute Group Co. Ltd. , Beijing 100081, China
Download:  HTML  PDF(12467KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To date, the 600 ℃ ultra-supercritical (USC) fossil fired power plant is the most advanced in the world. The research and development of 630~700 ℃ advanced ultra-supercritical (A-USC) fossil fired power plant will lay the thermal power technology in China in the international leading position, which is of important strategic significance to realize the national energy conservation and emissions reduction targets. Heat resistant material is the technical necking to further increase the steam parameter of thermal power plants. This paper briefed the-state-of-the-art of heat resistant materials used for 630~700 ℃ A-USC fossil fired power plant worldwide and clarified the critical candidate materials which are on the top priority to develop in China. The selective metallurgical processing design and selective strengthening mechanism, concluded by the author to design and improve heat resistant materials, was introduced. Under the guidance of the selective strengthening mechanism, G115? martensitic steel used for 630~650 ℃, C-HRA-2? and C-HRA-3? alloy used for 650~700 ℃, and C-HRA-1? alloy used for 700~750 ℃ have been successfully developed, which built a complete heat resistant material system to cover 630~700 ℃ A-USC fossil fired power plant. The boiler tubing and piping of these novel heat resistant materials have been industrially manufactured.

Key words:  630~700 ℃ steam temperature      advanced ultra-supercritical      fossil fired boiler      novel heat resistant material     
Received:  09 December 2019     
ZTFLH:  TB35  
Fund: National Key Research and Development Program of China(2017YFB0305200)
Corresponding Authors:  Zhengdong LIU     E-mail:  liuzhengdong@nercast.com

Cite this article: 

LIU Zhengdong,CHEN Zhengzong,HE Xikou,BAO Hansheng. Systematical Innovation of Heat Resistant Materials Used for 630~700 ℃ Advanced Ultra-Supercritical (A-USC)Fossil Fired Boilers. Acta Metall Sin, 2020, 56(4): 539-548.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00419     OR     https://www.ams.org.cn/EN/Y2020/V56/I4/539

MaterialCSiMnCrNiMoWCo
T/P910.08~0.120.20~0.400.30~0.508.0~9.5≤0.200.85~1.05≤0.05-
T/P920.07~0.13≤0.500.30~0.608.5~9.5≤0.400.30~0.601.50~2.00-
S304320.07~0.13≤0.30≤1.0017.0~19.07.5~10.5---
S310420.04~0.10≤1.0≤2.024.0~26.019.0~22.0---
Sanicro 250.04~0.10<0.40<0.6021.5~23.523.5~26.5-3.0~4.01.0~2.0
Inconel 6170.05~0.15≤1.0≤1.020.0~24.0Bal.8.0~10.0-10.0~15.0
Inconel 7400.005~0.08≤1.0≤1.023.5~25.5Bal.

≤2.0

-15.0~22.0
MaterialNbVTiNBCuFeStandard
T/P910.06~0.100.18~0.25≤0.010.035~0.070≤0.001≤0.10Bal.ASME SB 213/213M
T/P920.04~0.090.15~0.25≤0.010.030~0.0700.001~0.006-Bal.ASME SB 213/213M
S304320.30~0.60--

0.05~0.12

0.001~0.010

2.5~3.5

Bal.ASME SB 213/213M
S310420.20~0.60--0.15~0.35--Bal.ASME SB 213/213M
Sanicro 250.40~0.60--0.20~0.300.002~0.0082.5~3.5Bal.ASME SB 213/213M
Inconel 617--≤0.6-≤0.006≤0.5≤3.0ASME SB 167
Inconel 740

0.5~2.5

-0.5~2.5Al 0.2~2.00.0006~0.006

≤0.50

≤3.0ASME Code Case 2702
Table 1  Compositions of typical boiler heat resistant materials
Fig.1  TEM image of martensite lath of G115? steel after ageing at 650 ℃ for 8000 h
Fig.2  M23C6 coarsening of G115? steel during ageing at 650 and 700 ℃
Fig.3  Creep rupture strength of G115? and P92 steels at 650 ℃
Fig.4  Comparisions of oxidation resistances of G115? (a) and P92 (b) steels at 650 ℃
Fig.5  Microstructure characterization of oxide scale formed on G115? steel at 650 ℃ for 2000 h(a) bright field image in the vicinity of scale/substrate interface(b) STEM image in the vicinity of scale/substrate interface(c) SAED pattern of FeCr2O4 phase(d) schematic of oxide scale formed on G115? steel
AlloyCrCoMoAlTiCBNbVZrWNiRef.
Inconel61720.0~24.010.0~15.08.0~10.00.8~1.5≤0.60.05~0.15≤0.006----Bal.ASME SB 167
Inconel617B21.0~23.011.0~13.08.0~10.00.8~1.30.25~0.500.05~0.080.001~0.005≤0.6≤0.6--Bal.DIN 2.4673
C-HRA-3?21.0~23.011.0~13.08.5~9.00.8~1.30.3~0.50.05~0.080.002~0.005≤0.1≤0.1≤0.10≤1.0Bal.[21]
C-HRA-2?21.0~23.011.0~13.08.5~9.0--0.05~0.080.002~0.005≤0.1-≤0.10≤1.0Bal.[22]
Table 2  The chemical compositions of Inconel617, Inconel617B, C-HRA-3? and C-HRA-2? alloys[21,22]
Fig.6  Impact energy of C-HRA-3? during 700 ℃ ageing
Fig.7  Creep rupture testing curve of C-HRA-3? alloy at 700 ℃
Fig.8  Variations of impact energy of C-HRA-2? heat resistant alloy with ageing time at 675 and 700 ℃
Fig.9  Creep rupture testing curves of C-HRA-2? heat resistant alloy at temperatures of 650~700 ℃Color online
Fig.10  SEM (a) and TEM (b) images of cellular carbide in Inconel740H alloy, SAED patterns of cellular precipitates and matrix (c) and TEM image of cellular/matrix interface marked by circle in Fig.10b (d)
Fig.11  Creep rupture testing curves of C-HRA-1? alloy at 750 and 800 ℃
Fig.12  Schematic of heat resistant materials for Chinese 600-630-700 ℃ advanced ultra-supercritical fossil fired boiler
[1] Bugge J, Kj?r S, Blum R. High-efficiency coal-fired power plants development and perspectives [J]. Energy, 2006, 31: 1437
[2] Viswanathan R, Henry J F, Tanzosh J, et al. U.S. program on materials technology for ultra-supercritical coal power plants [J]. J. Mater. Eng. Perform., 2005, 14: 281
[3] Blum R, Vanstone R W, Messlier-Gouze C. Materials development for boilers and steam turbines operating at 700 ℃ [A]. Proceedings of the 4th International Conference on Advances in Materials Technology for Fossil Power Plants [C]. South Carolina: ASM International, 2005: 116
[4] Kl?wer J, Husemann R U, Bader M. Development of nickel alloys based on alloy 617 for components in 700 ℃ power plants [J]. Proced. Eng., 2013, 55: 226
[5] Viswanathan R, Coleman K, Rao U. Materials for ultra-supercritical coal-fired power plant boilers [J]. Int. J Press. Vessels Pip., 2006, 83: 778
[6] Rautio R, Bruce S. Sandvik Sanicro25, a new material for ultra-supercritical coal fired boilers [A]. Proceedings of the 4th International Conference on Advances in Materials Technology for Fossil Power Plants [C]. South Carolina: ASM International, 2005: 274
[7] Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
[7] 杜金辉, 吕旭东, 董建新等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115
[8] Liu Z D, Cheng S C, Wang Q J, et al. Advancement of Chinese Boiler Steels Used for 600 ℃ USC Power Plants [M]. Beijing: Metallurgical Industry Press, 2011: 339
[8] 刘正东, 程世长, 王起江等. 中国600 ℃火电机组锅炉钢进展 [M]. 北京: 冶金工业出版社, 2011: 339
[9] Liu Z D. Design and Practice of Heat Resistant Materials Based on Selective-Strengthening Theory for Power Station [M]. Beijing: Metallurgical Industry Press, 2017: 337
[9] 刘正东. 电站耐热材料的选择性强化设计与实践 [M]. 北京: 冶金工业出版社, 2017: 337
[10] Liu R Z. Strengthening Mechanism of Low Alloy Heat Resistant Steel [M]. Beijing: Metallurgical Industry Press, 1987: 10
[10] 刘荣藻. 低合金热强钢的强化机理 [M]. 北京: 冶金工业出版社, 1987: 10
[11] Distefano J R, Sikka V K, Blass J J, et al. Summary of modified 9Cr-1Mo steel development program, 1975-1985 [R]. Oak Ridge, TN: Oak Ridge National Lab., 1986, doi: 10.2172/712852
[12] Naoi H, Ogami M, Araki S, et al. Development of high-strength ferritic steel NF616 for boiler tubes [J]. Seitetsu Kenkyu, 1991, 340: 22
[13] Masuyama F. History of power plants and progress in heat resistant steels [J]. ISIJ Int., 2001, 41: 612
[14] Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants [J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
[15] Liu Z. Effect of tungsten and boron on microstructure and properties of G115 new martensitic heat resistant steel [D]. Beijing: University of Science and Technology Beijing, 2019
[15] 刘 震. 钨和硼元素对G115新型马氏体耐热钢组织与性能的影响 [D]. 北京: 北京科技大学, 2019
[16] Yang L X. Multi-scale characterization of Cu and correlation study on composition-structure-properties of ultra supercritical heat resistant steel G115 [D]. Beijing: Central of Iron and Steel Research Institute, 2017
[16] 杨丽霞. 超超临界耐热钢G115中Cu的跨尺度表征及其成分-组织结构-性能相关性研究 [D]. 北京: 钢铁研究总院, 2017
[17] Liu Z D, Cheng S C, Bao H S, et al. Steel for steam-temperature ultra-supercritical thermal power unit and preparation method thereof [P]. Chin Pat, 201210574445.1, 2014
[17] 刘正东, 程世长, 包汉生等. 蒸汽温度超超临界火电机组用钢及制备方法 [P]. 中国专利, 201210574445.1, 2014)
[18] China Standardization Committee on Boilers and Pressure Vessels. Conclusion of Technology Review of Boilers and Pressure Vessels Materials [Z]. No.240, 2017-12-20
[18] 全国锅炉压力容器标准化技术委员会. 锅炉压力容器材料技术评审结论 [Z]. 编号 240, 2017-12-20
[19] Bai Y, Liu Z D, Xie J X, et al. Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel [J]. Acta Metall. Sin., 2018, 54: 895
[19] 白 银, 刘正东, 谢建新等. 预氧化处理对G115钢高温蒸气氧化行为的影响 [J]. 金属学报, 2018, 54: 895
[20] Tytko D, Choi P P, Kl?wer J, et al. Microstructural evolution of a Ni-based superalloy (617B) at 700 ℃ studied by electron microscopy and atom probe tomography [J]. Acta Mater., 2012, 60: 1731
[21] Liu Z D, Chen Z Z, Bao H S, et al. The Ni-Cr-Co-Mo heat resistant alloy (C-HRA-3?) and steel pipe making process [P]. Chin Pat, 201410095587.9, 2016
[21] 刘正东, 陈正宗, 包汉生等. 一种镍-铬-钴-钼耐热合金(C-HRA-3?)及其钢管制造工艺 [P]. 中国专利, 201410095587.9, 2016)
[22] Liu Z D, Chen Z Z, Bao H S, et al. Heat-resisting alloy for 700 ℃ ultra-supercritical boiler water-cooling wall and tubing manufacturing method [P]. Chin Pat, 201510813308.2, 2016
[22] 刘正东, 陈正宗, 包汉生等. 700 ℃超超临界锅炉水冷壁用耐热合金及管材制造方法 [P]. 中国专利, 201510813308.2. 2016)
[23] Henry J, Zhou G, Word T. Lessons from the past: Materials-related issues in an ultra-supercritical boiler at Eddystone plant [J]. Mater. High. Temp., 2007, 24: 249
[24] Dong C. Study on microstructure and properties of solid solution strengthened heat resistant alloy C-HRA-2 [D]. Beijing: University of Science and Technology Beijing, 2019
[24] 董 陈. 固溶强化型耐热合金C-HRA-2的组织与性能研究 [D]. 北京: 北京科技大学, 2019
[25] Dong C, Liu Z D, Wang X T, et al. Formation behavior of long needle-like M23C6 carbides in a nickel-based alloy without γ' phase during long time aging [J]. J. Alloys Compd., 2020, 821: 153259
[26] Dong C, Liu Z D, Chen Z Z, et al. Carbide dissolution and grain growth behavior of a nickel-based alloy without γ' phase during solid solution [J]. J. Alloys Compd., 2020, 825: 154106
[27] Chong Y, Liu Z D, Godfrey A, et al. Detrimental effect of cellular precipitation on the creep strength of Inconel 740H [J]. Philos. Mag. Lett., 2013, 93: 688
[28] Liu Z D, Chong Y, Bao H S, et al. Boiler tube for 700 ℃ steam parameter thermal power generating unit and preparation method thereof [P]. Chin Pat, 201310206892.6, 2013
[28] 刘正东, 崇 严, 包汉生等. 一种700 ℃蒸汽参数火电机组用锅炉管及其制备方法(C-HRA-1) [P]. 中国专利, 201310206892.6, 2013)
No related articles found!
No Suggested Reading articles found!