1.Central Iron and Steel Research Institute, Beijing 100081, China 2.Tsinghua University, Beijing 100084, China
Cite this article:
PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel. Acta Metall Sin, 2020, 56(4): 601-618.
New generation advanced steel has been studied with the increased requirement for high property steel by various engineering fields since the 21st century. Correspondingly, their welding materials and welding techniques are crucial for the application of the steels. In this paper, the research status and the development of the welding processes, microstructure and properties of welded joint of the advanced steel, including ultra-fine grained steel, low carbon bainitic steel, high nitrogen austenite stainless steel and high strength automotive steel are introduced. The microstructure evolution of welded joints, the microstructure and properties of welded joints, the formation of inclusions and martenite-austenite (M-A) components and its influence on properties, and the influence of alloying elements and heat input on weld properties are reviewed. Study results show that heat affected zone (HAZ) is the main area which affects the performance of welded joints, and proper welding materials and processes are required to achieve a matching welded joint. The strengthening and toughening mechanism of weld joint, mechanism of fatigue crack growth, effect of welding thermal process on microstructure and properties of steel, are also reviewed. At last, the research prospect on welding materials and welding techiques is presented.
Fig.1 Microstructures of laser welded joint of SS400 steel (heat input 2100 W, welding speed 0.8 m/min)(a) welding metal (WM) (b) heat affected zone (HAZ) (c) base metal (BM)
Fig.2 TEM images of lower bainite of laser welded joint of 400 MPa ultra-fine grain steel(heat input 2400 W, welding speed 1.0 m/min)(a) parallel ferrite lath (b) ferrite lath in different directions(c) bainitic lath and a small amount of retained austenite (d) carbide dispersed in ferrite
Fig.3 Welding metal morphologies of metal active gas (MAG) welding joint with different carbon equivalents (Ceq) of ultra low carbon bainite (ULCB) steel (B—bainite, AF—acicular ferrite, GB—grain boundary, M—martensite)(a) Ceq=0.34 (b) Ceq=0.30 (c) Ceq=0.36 (d) Ceq=0.38
Fig.4 Fracture morphologies of ULCB metal active gas (MAG) welding joint deposited metal (-50 ℃)(a) quasi-cleavage (b) quasi-cleavage and dimple
Fig.5 TEM images of 1Cr22Mn15N melt inert-gas (MIG) welding joint in heat affected zone (HAZ)(a) austenite (b) δ-ferrite
Fig.6 TEM images and diffraction pattern of Cr23C6 in HAZ of 1Cr22Mn15N MIG welding joint (peak temperature 800 ℃, welding speed 50 ℃/s)(a) bright field image (b) dark field image (c) diffraction pattern
Fig.7 Volume fraction of nitrogen of argon in arc welding seam
Fig.9 Effect of welding speed (a) and defocusing amount (d) (b) on joint hardness
[1]
Peng Y, Tian Z L, He C H, et al. Microstructures and mechanical properties of welding HAZ of 400 MPa ultra-fine grained steel [J]. Trans. China Weld. Inst., 2003, 24(5): 21
He C H, Peng Y, Tian Z L, et al. Microstructure and properties of welded joint of 400 MPa ultra-fine grained hot rolled ribbed rebar [J]. J. Iron Steel Res., 2004, 16(6): 56
Wang S C, Kao P W. The effect of alloying elements on the structure and mechanical properties of ultra low carbon bainitic steels [J]. J. Mater. Sci., 1993, 28: 5169
[12]
Miao P F, Tong Y G, Guo Y B. Effect of alloying elements on ultra-low-carbon bainite steel and its influence on weldability [J]. Hot Work. Technol., 2010, 39(20): 29
Lis A K. Mechanical properties and microstructure of ULCB steels affected by thermomechanical rolling, quenching and tempering [J]. J. Mater. Process. Technol., 2000, 106: 212
[16]
Yang X Q, Yang H L, Yao L D. Supper-low-carbon bainitic steel WDB620 and its welding performance [J]. Mater. Mech. Eng., 2003, 27(9): 42
Bhadeshia H K D H. Bainite in Steels [M]. 2nd Ed., London: IOM Communication, 2001: 1
[18]
Yang Y X, Tong Y G, Liu M T, et al. Relationship between the toughness and fine microstructures of M-A constituents in restrained multipass TIG welded HAZS of 15CrMoV bainitic steel [J]. Trans. China Weld. Inst., 1986, 7(4): 174
Li Y, Baker T N. Effect of morphology of martensite-austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels [J]. Mater. Sci. Technol., 2010, 26: 1029
[20]
Shuichi S, Takahiro K, Yuichi K. Influence of martensitic islands on fracture behaviour of high heat input weld HAZ [J]. Weld. Int., 2009, 23: 397
[21]
Wang A H, Peng Y, Xiao H J, et al. Impact fracture behavior of deposited metal of 690 MPa level high strength low alloy steel [J]. J. Mech. Eng., 2012, 48(2): 73
Thewlis G. Weldability of X100 linepipe [J]. Sci. Technol. Weld. Joining, 2000, 5: 365
[24]
Zhang X Y, Gao H L, Zhuang C J, et al. Influence of welding heat input on microstructure and properties of coarse grain heat-affected zone in X100 pipeline steel [J]. Trans. China Weld. Inst., 2010, 31(3): 29
Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels [J]. ISIJ Int., 1996, 36: 1406
[26]
Ishikawa F, Takahashi T, Ochi T. Intragranular ferrite nucleation in medium-carbon vanadium steels [J]. Metall. Mater. Trans., 1994, 25A: 929
[27]
Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1: 1987
[28]
Enomoto M. Nucleation of phase transformations at intragranular inclusions in steel [J]. Met. Mater., 1998, 4: 115
[29]
Zhang Z, Farrar R A. Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals [J]. Mater. Sci. Technol., 1996, 12: 237
[30]
Lan L Y, Qiu C L, Zhao D W, et al. Microstructural characters and toughness of different sub-regions in the welding heat affected zone of low carbon bainitic steel [J]. Acta Metall. Sin., 2011, 47: 1046
Zhang Z, Farrar R A. Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals [J]. Mater. Sci. Technol., 1996, 12: 237
[32]
Cao Z M, Zhang G F, Zhang J M, et al. Evolution of M-A constituents in HAZ and its effect on toughness of MAG joint of granular bainitic steel Q690C [J]. J. Mech. Eng., 2014, 50(20): 84
Liao J, Ikeuchi K, Matsuda F. Effect of cooling time on HAZ toughness and microstructure: Simulated HAZ toughness of low-alloy SQV-2A pressure vessel steel [J]. Weld. Int., 1996, 10: 552
[35]
Gao H L, Dong Y H, Feng Y R. Welding local embrittlement of oil and gas pipeline steel and its prevention [J]. Chin. J. Mech. Eng., 2001, 37(3): 14
Zhang M, Chen Y Y, Liu M Z, et al. Analysis of toughening mechanism of submerged arc welded joint of ultra low carbon bainite steel [J]. Trans. China Weld. Inst., 2016, 37(6): 45
Zhang X Y, Gao H L, Zhuang C J, et al. Influence of welding heat input on microstructure and properties of coarse grain heat-affected zone in X100 pipeline steel [J]. Trans. China Weld. Inst., 2010, 31(3): 29
Zhang X B, Cao R, Feng W, et al. Fracture mechanism of in-situ tensile of TIG welding joints for 980 MPa high strength steels [J]. China Mech. Eng., 2010, 21: 2746
Zhang X B, Cao R, Peng Y, et al. Tensile fracture mechanism of different samples from MAG welded joints of 980 MPa low carbon bainite high strength steel [J]. Mater. Mech. Eng., 2012, 36(2): 19
Du Q B, Ma C Y, Peng Y, et al. Effect of heat input on microstructure and performance of weld metal for Q890 high strength steel [J]. Mater. Sci. Technol., 2013, 21(5): 143
Yi H L, Du L X, Wang G D, et al. Bainite transformation under continuous cooling of Nb-microalloyed low carbon steel [J]. J. Iron Steel Res. Int., 2006, 13(3): 36
[45]
Ma C Y, Tian Z L, Du Z Y, et al. Effect of heat input on structure and mechanical properties of welded joint in a 800 MPa grade RPC steel [J]. Trans. China Weld. Inst., 2004, 25(2): 23
Li Y J, Jiang Q L, Bao Y P, et al. Effect of heat input on the microstructure and toughness of heat affect zone of Q690 high strength steel [J]. Sciencepaper Online, 2011, 6: 98
Yan C Y, Li W S, Liu H, et al. Factors influencing notch toughness of coarse-grained heat affected zone for 9%Ni steel [J]. J. Mech. Eng., 2010, 46(18): 96
Moeinifar S, Kokabi A H, Hosseini H R M. Influence of peak temperature during simulation and real thermal cycles on microstructure and fracture properties of the reheated zones [J]. Mater. Des., 2010, 31: 2948
[49]
Moeinifar S, Kokabi A H, Hosseini H R M. Effect of tandem submerged arc welding process and parameters of gleeble simulator thermal cycles on properties of the intercritically reheated heat affected zone [J]. Mater. Des., 2011, 32: 869
[50]
Lu D X, Cen Y, Wang H, et al. Structure and mechanical properties on DH40 ship building steel joints by multi-layer and multi-pass welding technology [J]. Trans. China Weld. Inst., 2013, 34(2): 79
Xu L H, Chen Y Q, Zhang J, et al. Effect of thermal cycle on microstructure and mechanical properties of heat affected zone of 07MnCrMoVR steel [J]. Iron Steel, 2011, 46(2): 62
Peng J X, Zhang T H, Du Y, et al. Effect of secondary welding thermal cycles on microstructure and toughness of over-heated zone of ultrahigh strength steel [J]. Dev. Appl. Mater., 2006, 21(3): 23
Xing S Q, Lu H C, Ma Y L, et al. Microstructure evolution of CG-HAZ reheated by second thermal cycle for 800 MPa grade high strength steel [J]. J. Mater. Eng., 2015, 43(7): 93
Raj B. High Nitrogen Steels and Stainless Steels [M]. Abington: Woodhead Publishing, 2004: 1
[55]
Harzenmoser M. Welding of high nitrogen steels [J]. Mater. Manuf. Process., 2004, 19: 75
[56]
Woo I, Kikuchi Y. Weldability of high nitrogen stainless steel [J]. ISIJ Int., 2002, 42: 1334
[57]
Woo I, Horinouchi T, Kikuchi Y. Effect of microstructure on the heat affected zone of high nitrogen containing Ni-free austenite stainless steel [J]. Trans. JWRI, 2001, 30(1): 77
[58]
Liao J S. Nitride precipitation in weld HAZs of a duplex stainless steel [J]. ISIJ Int., 2001, 41: 460
[59]
Ogawa M, Hiraoka K, Katada Y, et al. Chromium nitride precipitation behavior in weld heat-affected zone of high nitrogen stainless steel [J]. ISIJ Int., 2002, 42: 1391
[60]
Du W S, Peng Y, Zhao L, et al. Microstructure and mechanical properties of MIG welded joint of high nitrogen austenite stainless steel [J]. Weld. Joining, 2008, (12): 25
Du W S, Zhao L, Tian Z L, et al. Microstructure characterization of weld HAZ in 1Cr22Mn15N high nitrogen austenitic stainless steel [J]. Trans. China Weld. Inst., 2007, 28(7): 1
Balachandran G. Developments in the manufacture of high nitrogen stainless steels [A]. High Nitrogen Steels and Stainless Steels [M]. Pangbourne, UK: Alpha Science International Ltd., 2004: 66
[63]
Iamboliev T, Zumbilev A. Laser beaming welding of high-nitrogen containing austenitic steel [J]. Weld. J., 1999, 78: 245
[64]
Harzenmoser M, Rennhard C, Hereth M, et al. Recent developments on the weldability of a new high nitrogen stainless steel [J]. Mater. Sci. Forum, 1999, 318-320: 591
[65]
Du Toit M. The behaviour of nitrogen during the autogenous arc welding of stainless steel [D]. Pretoria: University of Pretoria, 2004
[66]
Kuwana T, Kokawa H. The nitrogen absorption of iron weld metal during gas tungsten arc welding [J]. Trans. Jpn. Weld. Soc., 1986, 17: 20
[67]
Blake P D. Nitrogen in steel welds metals [J]. Met. Constr., 1979: 196
[68]
Den Ouden G, Ohno S. Effect of surface active elements on nitrogen content of iron under arc melting [J]. Trans. Natl. Res. Inst. Metall., 1973, 15: 20
[69]
Kamiya O, Chen Z W, Kikuchi Y. Microporosity formation in partially melted zone during welding of high nitrogen austenitic stainless steels [J]. Met. Mater. Sci., 2003, 37: 2475
[70]
Kuwana T, Kokawa H, Naitoh K. The nitrogen absorption of stainless steel weld metal during gas tungsten arc weldign [J]. Trans. Jpn. Weld. Soc., 1986, 17: 15
[71]
Hertzman S, Wessman S. An experimental and theoretical study of nitrogen flux in stainless steel TIG welds [J]. Mater. Sci. Forum, 1999, 318-320: 579
[72]
Katz J D, King T B. The kinetics of nitrogen absorption and desorption from a plasma arc by molten iron [J]. Metall. Mater. Trans., 1989, 20B: 175
[73]
Uda M, Ohno S. Effect of surface active elements on nitrogen content of iron under arc melting [J]. Trans. Natl. Res. Inst. Metall., 1973, 15: 20
[74]
Lancaster J F. Metallurgy of Welding [M]. Abington: Woodhead Publishing, 1999: 1
[75]
Ogawa T, Suzuki K, Zaizen T. The weldability of nitrogen-containing austenitic stainless steel: Part II-Porosity, cracking and creep properties [J]. Weld. J., 1984, 63: 213
[76]
Du Toit M, Pistorius P C. Nitrogen control during autogenous arc welding of stainless steel: Part I-Experimetal observations [J]. Weld. J., 2003, 82: 219
[77]
Du Toit M, Pistorius P C. Nitrogen control during the autogenous arc welding of stainless steel: Part II-A kinetic model for nitrogen absorption and desorption [J]. Weld. J., 2003, 82: 231
[78]
Arlt N, Gilessen C, Heimann W. High nitrogen steels HNS 90 [C]. Stahleisen, Dusseldorf, 1990: 150
[79]
Akdut N, Foct J. Microstructure and deformation behavior of high nitrogen duplex stainless steels [J]. ISIJ Int., 1996, 36: 883
[80]
Uggowitzer R J, Magdowski R, Speidel M O. Nickel free high nitrogen austenitic steels [J]. ISIJ Int., 1996, 36: 901
[81]
Simmons J W, Convino B SHawkJr, , et al. Effect of nitride (Cr2N) precipitation on the mechanical, corrosion, and wear properties of austenitic stainless steel [J]. ISIJ Int., 1996, 36: 846
[82]
Ogawa M, Hiraoka K, Katada Y, et al. Chromium nitride precipitation behavior in weld heat-affected zone of high nitrogen stainless steel [J]. ISIJ Int., 2002, 42: 1391
[83]
Du Toit M. Filler metal selection for welding a high nitrogen stainless steel [J]. J. Mater. Eng. Perform., 2002, 11: 306
[84]
Nishimoto K, Mori H. Hot cracking susceptibility in laser weld metal of high nitrogen stainless steels [J]. Sci. Technol. Adv. Mater., 2004, 5: 231
[85]
Long C J, DeLong W T. The ferrite content of austenitic stainless steel weld metal [J]. Weld. Technol., 1973, 52: 281
[86]
Woo I, Horinouchi T, Kikuchi Y. Heat-affected zone cracking susceptibility in high nitrogen-containing austenitic stainless steel [J]. Tetsu Hagańe, 2001, 87: 486
Enjo T, Kikuchi Y, Kobayashi T, et al. Gas shielded arc welding of high-nitrogen austenitic stainless steel [J]. Trans. JWRI, 1980, 9(2): 173
[88]
Woo I, Aritoshi M, Kikuchi Y. Metallurgical and mechanical properties of high nitrogen austenitic stainless steel friction welds [J]. ISIJ Int., 2002, 42: 401
[89]
Yang Z Q, Ma G Y. The study on the lightweight design method of the rear longitudinal beam of a car [J]. Automob. Appl. Technol., 2018, (8): 132
Lei H J. Energy saving and new energy vehicle technology route [J]. Auto Time, 2017, (1): 12
[90]
雷洪钧. 节能与新能源汽车技术路线图 [J]. 时代汽车, 2017, (1): 12
[91]
Sun G N. Vehicle lightweight technology [J]. Auto Eng., 2017, (7): 14
[91]
孙冠男. 汽车轻量化技术 [J]. 汽车工程师, 2017, (7): 14
[92]
Zhang Y, Li Y N, Chang Y T, et al. Properties of high strength plastic product hot rolled medium manganese steel and its application in automobile lightweight [J]. Automob. Technol. Mater., 2017, (7): 49
Wang Y J, Cao Y, Peng Y, et al. Effects of welding speed on laser welded joints microstructure and properties of HC420LA low alloy high strength steel [J]. Appl. Laser, 2018, 38: 591
Xu J J, Wang K H, Peng Y, et al. Effect of heat input on stomatal resistance and mechanical properties of high nitrogen steel plate laser welding joint [J]. Mar. Technol., 2016, (1): 55
Jing H, Wang K H, Qiang W, et al. Effect of N-content on microstructure and mechanical properties of PMIG welding joints of high nitrogen steel [J]. Trans. China Weld. Inst., 2017, 38(4): 95
Cui B, Zhang H, Liu J, et al. Study on the impact of the shielding gas on the droplet transfer mode and blowhole defect of high nitrogen steel welding [J]. J. Mech. Eng., 2017, 53(22): 87
Woo I, Kikuchi Y. Weldability of high nitrogen stainless steel [J]. ISIJ Int., 2002, 42: 1334
[99]
Zhai Z J, Cao Y, Zhao L, et al. Effect of heat input on microstructure and mechanical properties of laser welded DP600 steel [J]. J. Iron Steel Res., 2019, 31: 582
Soussan A, Degallaix S, Magnin T. Work-hardening behaviour of nitrogen-alloyed austenitic stainless steels [J]. Mater. Sci. Eng., 1991, A142: 169
[102]
Lee S, De Cooman B C. Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel [J]. Steel Res. Int., 2015, 86: 1170
[103]
Xia M S, Zhang H B, Peng Y, et al. Microstructure and properties of laser welded joints of 980 MPa grade dual phase steel [J]. Automob. Technol. Mater., 2016, (12): 49
Cao Y, Zhao L,Peng Y, et al. Effect of heat input on microstructure and mechanical properties of laser welded medium Mn steel joints [J]. Chin. J. Lasers, 45(11): 89
Lun N, Saha D C, Macwan A, et al. Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel [J]. Mater. Des., 2017, 131: 450
[106]
Di X J, Deng S J, Wang B S. Effect of pulse current on mechanical properties and dendritic morphology of modified medium manganese steel welds metal [J]. Mater. Des., 2015, 66: 169
[107]
Jia Q, Liu L, Guo W, et al. Microstructure and tensile-shear properties of resistance spot-welded medium Mn steel [J]. Metals, 2018, 8: 48
[108]
Gilath I, Signamarcheix J M, Bensussan P. A comparison of methods for estimating the weld-metal cooling rate in laser welds [J]. J. Mater. Sci., 1994, 29: 3358
[109]
Zhang F, Li F, Hua X M, et al. Research of microstructure and mechanical properties of laser tailor-welded blank of cold rolled multi-phase steel and HSLA [J]. Chin. J. Lasers, 2015, 42(9): 149
Cao Y, Luo C, Zhao L, et al. Microstructural evolution and mechanical properties of laser-welded joints of medium manganese steel [J]. J. Iron Steel Res. Int., 2019: 1
[111]
Hernandez V H B, Nayak S S, Zhou Y. Tempering of martensite in dual-phase steels and its effects on softening behavior [J]. Metall. Mater. Trans., 2011, 42A: 3115
[112]
Thompson S W, Colvin D J, Krauss G. Austenite decomposition during continuous cooling of an HSLA-80 plate steel [J]. Metall. Mater. Trans., 1996, 27A: 1557
[113]
Esquivel A S, Nayak S S, Xia M S, et al. Microstructure, hardness and tensile properties of fusion zone in laser welding of advanced high strength steels [J]. Can. Metall. Quart., 2012, 51: 328
[114]
Dong D Y, Liu Y, Yang Y L, et al. Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding [J]. Mater. Sci. Eng., 2014, A594: 17
[115]
Cao Y, Zhao L, Peng Y, et al. Microstructure and mechanical properties of laser welded new generation medium manganese steel for automobile [J]. Chin. J. Lasers, 2018, 45(11): 1114001
Saha D C, Westerbaan D, Nayak S S, et al. Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels [J]. Mater. Sci. Eng., 2014, A607: 445
[117]
Mao G J, Cao R, Guo X L, et al. In situ observation of kinetic processes of lath bainite nucleation and growth by laser scanning confocal microscope in reheated weld metals [J]. Metall. Mater. Trans., 2017, 48A: 5783
[118]
Xia M S, Kuntz M L, Tian Z L, et al. Failure study on laser welds of dual phase steel in formability testing [J]. Sci. Technol. Weld. Joining, 2008, 13: 378
[119]
Xia M, Sreenivasan N, Lawson S, et al. A comparative study of formability of diode laser welds in DP980 and HSLA steels [J]. J. Eng. Mater. Technol., 2007, 129: 446
LI Fengzhao;GU Yingni;JIANG Jiang;AO Qing;SUN Dongsheng (College of Materials Science and Engineering; Shandong University of Technology; Jinan 250061). MULTI-COMPONENT MICRO-ALLOYED AIR COOLING BAINITIC STEELS[J]. 金属学报, 1997, 33(5): 492-498.
[8]
LIU Xiao;ZHANG Mingxing;CHEN Daming;ZHOU Lubin;KANG Mokuang Northwestern Polytechnical University; Xi'an Faculty No.401; Northwestern Polytechnical University; Xi'an 710072. CCT-DIAGRAM OF Si-Mn-Mo ALLOY SYSTEM BAINITIC STEELS[J]. 金属学报, 1993, 29(3): 1-5.