1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2 Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083, China
Cite this article:
Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites. Acta Metall Sin, 2018, 54(3): 470-484.
High performance Cu-Al composites have widely applied in aviation, aerospace and other fields, at the same time the continuous casting as one of composite forming technologies has been also developed in recent years. Obviously, it is an effective and cheap way to numerically simulate the solidification process of short process continuous casting for manufacturing Cu-Al composites before fabricating them. To meet the need of simulation, in this work, a numerical method for theoretically describing the Cu-Al composite forming in continuous casting processes was proposed. The vertical continuous casting of copper clad aluminum bar billet and the horizontal continuous casting of copper and aluminum composite plate were performed. Based on this method, the steady state temperature fields in solidification processes in the above two kinds of casting technologies were numerically simulated by using proCAST software package. In this work the effects of the theoretical parameters on the steady state temperature fields and then on the performance of Cu-Al composites fabricated by using the above two casting technologies were carefully discussed. It is found that the experimental and simulated results are in good agreement. For the cases of the copper clad aluminum bar billet with a cross section of 100 mm×100 mm, and the copper or aluminum plate with a thickness of 20 mm and a width of 75 mm (coat thicknesses of 4~7 mm), the feasible parameters for producing high performance Cu-Al composites, for examples, are as follows: for the former the temperature of copper liquid is 1250 ℃, the temperature of aluminum liquid is 750 ℃, the length of crystallizer is 200 mm, the length of graphite mandrel tube is 290 mm, the flux of the first cooling water is 1600~2000 L/h, the flux of the second cooling water is 900~1300 L/h, the distance from the second cooling water to the exit of crystallizer is 30 mm, and the withdrawing speed is 60~80 mm/min. For the latter the temperature of copper melt was 1250 ℃, the temperatures of aluminum melt are 760~800 ℃, the withdrawing speed is 40~80 mm/min, and the length of aluminum duct is 20 mm.
Fund: Supported by National High Technology Research and Development Program of China (No.2013AA030706), Beijing Science and Technology (No.Z141100004214003) and Science and Technology Cooperation Project of Yunnan Province (No.2015IB012)
Fig.2 Geometry of the VCFCC processing model for fabricating CCA composites (1—graphite casting mold, 2—tcopper sheath, 3—graphite mandrel tube, 4—water-cooling copper chiller of crystallizer, 5—aluminum core, 6—copper liquid, 7—aluminum liquid, 8—crucible, L0—length of crystallizer; L1—copper solidification position; L2—aluminum solidification position; L3—length of compound zone) (a) external form of 3D Geometric model (b) internal form of 3D Geometric model
Fig.3 Schematics of the boundary conditions (left) and interface conditions (right) for simulation of the steady-state temperature in VCFCC processing for manufacturing CCA composites (1~6 are the boundary conditions for simulation of temperature of aluminum liquid, temperature of copper liquid, primary cooling water, secondary cooling water and geometric symmetry plane, respectively. I~IV are the interfaces between the aluminum core and the graphite mandrel tube, between the solidified copper sheath and the graphite mandrel tube, between the solidified copper sheath and the graphite cast mould, and between the graphite cast mould and the copper chiller of crystallizer, respectively)
Fig.4 Simulated steady state temperature field in solidification process of VCFCC for producing CCA composites, using proCAST software package (TAl—aluminum liquid temperature) (a) temperature nephogram (b) solidification map
L0 / mm
s / mm
h / mm
v / (mm?min-1)
L2 / mm
80
50
180
130
132.0
100
50
180
130
120.8
100
10
180
130
72.2
100
50
180
130
70.8
100
50
180
100
93.8
100
50
190
130
106.9
150
50
180
130
47.7
150
10
180
130
47.5
150
10
240
130
8.1
150
10
180
100
30.5
150
10
240
100
-12.2
200
50
270
130
99.8
200
50
310
100
35.4
200
10
270
130
48.3
200
10
310
100
16.8
250
50
310
130
103.5
250
50
380
100
16.2
250
10
310
130
64.5
250
10
380
100
-5.8
Table 1 Effect of the length of crystallizer on solidified position of copper and aluminum
h mm
Q1 Lh-1
Q2 Lh-1
TAl ℃
v mmmin-1
L1 mm
L2 mm
L3 mm
Ts ℃
250
1600
900
750
60
73.5
78.15
67.08
740
270
1600
900
750
60
73.5
69.26
47.61
710
290
1600
900
750
60
73.5
35.82
27.92
685
310
1600
900
750
60
73.5
18.62
5.93
650
330
1600
900
750
60
73.4
6.43
-3.24
630
Table 2 Effect of length of mandrel tube on solidified position of copper and aluminum
No.
h mm
Q1 Lh-1
Q2 Lh-1
TAl ℃
v mmmin-1
L1 mm
L2 mm
L3 mm
Ts ℃
1
290
1400
900
750
60
72.5
37.94
28.95
690
2
290
1600
900
750
60
74.0
35.82
27.92
685
3
290
1800
900
750
60
74.5
34.95
26.83
683
4
290
2000
900
750
60
74.5
33.86
26.82
680
Table 3 Effect of flux of primary cooling water on solidified position of copper and aluminum
No.
h mm
Q1 Lh-1
Q2 Lh-1
TAl ℃
v mmmin-1
L1 mm
L2 mm
L3 mm
Ts ℃
1
290
1600
700
750
60
75.5
35.94
27.93
690
2
290
1600
900
750
60
75.0
35.82
27.92
685
3
290
1600
1100
750
60
73.5
35.12
26.83
687
4
290
1600
1300
750
60
73.5
34.95
26.83
684
5
290
1600
1500
750
60
73.5
33.84
25.83
680
Table 4 Effect of flux of secondary cooling water on solidified position of copper and aluminum
No.
h mm
Q1 Lh-1
Q2 Lh-1
TAl ℃
v mmmin-1
L1 mm
L2 mm
L3 mm
Ts ℃
1
290
1600
900
750
40
55.5
-11.51
0
-
2
290
1600
900
750
60
75.0
35.82
27.92
685
3
290
1600
900
750
80
80.0
59.07
51.85
725
4
290
1600
900
750
100
81.0
76.93
62.97
770
5
290
1600
900
750
120
82.5
87.49
70.39
790
Table 5 Effect of continuous casting speed on solidified position of copper and aluminum
Fig.5 Cross section morphologies of CCA samples manufactured in different cooling water flows (a) 1000 L/h (b) 1600 L/h (c) 2000 L/h
Fig.6 Schematic of horizontal continuous casting process for fabricating Cu-Al composite slab
Fig.7 Geometry of horizontal continuous casting for fabricating Cu-Al composite slab
Fig.8 Effects of length of aluminum liquid ducts on solidification position of copper and aluminum in horizontal continuous casting as shown in Fig.7 (a1, a2) 10 mm (b1, b2) 20 mm (c1, c2) 30 mm
Fig.9 Effects of casting speeds on solidification position of copper and aluminum in horizontal continuous casting as shown in Fig.7 (a1, a2) 40 mm/min (b1, b2) 60 mm/min (c1, c2) 80 mm/min (d1, d2) 100 mm/min (e1, e2) 120 mm/min
Fig.10 Effects of temperatures of aluminum liquid on solidification position of copper and aluminum in horizontal continuous casting as shown in Fig.7 (a1, a2) 760 ℃ (b1, b2) 780 ℃ (c1, c2) 800 ℃ (d1, d2) 820 ℃ (e1, e2) 850 ℃
Fig.11 Morphologies of binding layers (a1~d1) and surface quality (a2~d2) of slabs with casting speeds of 40 mm/min (a1, a2), 60 mm/min (b1, b2), 80 mm/min (c1, c2) and 100 mm/min (d1, d2) in horizontal continuous casting as shown in Fig.7
[1]
Mitsugi S, Oelschlagel D, Miyake Y, et al.Properties of copper-clad aluminum bus bar[J]. Hitachi Rev., 1974, 23: 261
[2]
Gibson A.Emerging applications for copper-clad steel and aluminum wire[J]. Wire J. Int., 2008, 41: 142
[3]
Luo Y B, Liu X H, Xie J X.Effects of sectional form and configuration on the conductivity of copper cladding aluminum bars with a rectangle section[J]. J. Univ. Sci. Technol. Beijing, 2009, 30: 1292(罗奕兵, 刘新华, 谢建新. 矩形截面铜包铝导电排的导电性能及断面形状结构的影响 [J]. 北京科技大学学报, 2009, 30: 1292)
[4]
Wan T Y.The production method of copper-plating aluminum wire and its products[J]. Alum. Proc., 1992,(3): 53(万天一. 镀铜铝线及其制品的生产方法 [J]. 铝加工,1992, (3): 53)
[5]
Dion P A.Method of metal cladding [P]. US Pat, US3408727, 1968
[6]
Wang Y H, Wu Y Z, Ma Y Q, et al.Microstructure and mechanical properties of copper clad aluminum wire by drawing at room temperature[J]. Chin. J. Nonferrous Met., 2006, 16: 2066(王跃华, 吴云忠, 马永庆等. 铜包铝线材室温拉变形后的显微组织和力学性能 [J]. 中国有色金属学报, 2006, 16: 2066)
[7]
Rhee K Y, Han W Y, Park H J.Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics[J]. Mater. Sci. Eng., 2004, A384: 70
[8]
Li X B, Zu G Y, Wang P.Microstructural development and its effects on mechanical properties of Al/Cu laminated composite[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 36
[9]
Li L, Nagai K, Yin F X.Progress in cold roll bonding of metals[J]. Sci. Technol. Adv. Mater., 2008, 9: 023001
[10]
Yang Y S, Yang D D, Yang M, et al.Hot extrusion forming process of copper and aluminum composite plate[J]. J. Henan Univ. Sci. Technol.: Nat. Sci., 2011, 32(6): 1(杨永顺, 杨栋栋, 杨明等. 铜铝复合板热挤压成形工艺 [J]. 河南科技大学学报: 自然科学版, 2011, 32(6): 1)
[11]
Zhu X H, Lv X F, Chen G Q, et al.Failure analysis on explosive welded composite plate[J]. Heat Treat. Met., 2014, 68(1): 144(朱晓红, 吕新峰, 陈国琦等. 复合板爆炸焊接的失效分析 [J]. 金属热处理, 2014, 68(1): 144)
[12]
Chen M, Wang X Y, Dong T Y, et al.Performance analysis on interlayer of high purity aluminum and copper bonded by explosive welding[J]. Nonferrous Metall., 2014,(5): 56, 2014, (5): 56)
[13]
Lu W K, Xie J P, Wang A Q, et al.Effects of annealing temperature on interfacial microstructure and mechanical properties of Cu/Al roll-casted composite plate[J]. Mater. Mech. Eng., 2014, 38(3): 14(路王珂, 谢敬佩, 王爱琴等. 退火温度对铜铝铸轧复合板界面组织和力学性能的影响 [J]. 机械工程材料, 2014, 38(3): 14)
[14]
Cui J Z.Fabrication of aluminum-stainless steel compound belt by liquid-solid phase rolling[J]. Mater. Rev., 2001, 15(2): 14(崔建忠. 液-固相轧制复合法生产铝不锈钢复合带[J]. 材料导报, 2001, 15(2): 14)
[15]
Zhang H, Xie J P, Shang Z P, et al.Bonding interface structure and properties of Cu-Al-Cu compound plate fabricated by cast-rolled process[J]. J. Henan Univ. Sci. Technol.: Nat. Sci. Ed., 2015, 36(3): 1(张衡, 谢敬佩, 尚郑平等. 铸轧法制备铜-铝-铜复合板的界面组织与性能 [J]. 河南科技大学学报: 自然科学版, 2015, 36(3): 1)
[16]
Xie J X, Liu X H, Liu X F, et al. Horizontal continuous direct composite cast forming equipment and technology of a cladding materials [P]. Chin Pat, 200610112817.3, 2006(谢建新, 刘新华, 刘雪峰等.一种包复材料水平连铸直接复合成形设备与工艺 [P]. 中国专利, 200610112817.3, 2006)
[17]
Xie J X, Liu X H, Liu X F, et al. A high performance rectangle cross section copper cladding aluminum composite electric bus bar and manufacturing process [P]. Chin Pat, 200810057668.4, 2008(谢建新, 刘新华, 刘雪峰等.一种高性能铜包铝矩形横断面复合导电母排及其制备工艺 [P]. 中国专利, 200810057668.4, 2008)
[18]
Wu Y F, Liu X H, Xie J X, et al.Copper cladding aluminum composite materials with rectangle section fabricated by horizontal core-filling continuous casting[J]. Chin. J. Nonferrous Met., 2012, 22: 2500(吴永福, 刘新华, 谢建新等. 矩形断面铜包铝复合材料水平连铸直接复合成形 [J]. 中国有色金属学报, 2012, 22: 2500)
[19]
Xie J X, Liu X H, Huang H Y.Horizontal core-filling continuous casting of copper clad aluminum conductor materials: Properties and applications[J]. Light Met. Age, 2015, 73: 64
[20]
Su Y J, Liu X H, Huang H Y, et al.Effects of processing parameters on the fabrication of copper cladding aluminum rods by horizontal core-filling continuous casting[J]. Metall. Mater. Trans., 2011, 42B: 104
[21]
Su Y J, Liu X H, Huang H Y, et al.Interfacial microstructure and bonding strength of copper cladding aluminum rods fabricated by horizontal core-filling continuous casting[J]. Metall. Mater. Trans., 2011, 42A: 4088
[22]
Xie J X, Wu C J, Liu X F, et al. A novel forming process of copper cladding aluminum composite materials with core-filling continuous casting [J]. Mater. Sci. Forum., 2007, 539-543: 956
[23]
Hu N B, Liu Y W, Jia Z X, et al.Interface methods between HyperMesh and ProCAST[J]. Spec. Cast Nonferrous Alloys, 2014, 34: 143(胡宁波, 刘耀蔚, 贾志欣等. HyperMesh与ProCAST接口方式的研究 [J]. 特种铸造及有色合金, 2014, 34: 143)
[24]
Liu X H, Fu X T, Fu H D, et al.Numerical simulation analysis of effects of processing parameters on forming process of vertical continuous core-filling casting for copper clad aluminum billets with large section[J]. Chin. J. Nonferrous Met., 2017, 27: 514(刘新华, 付新彤, 付华栋等. 大断面铜包铝棒坯立式连铸成形工艺参数对连铸复合过程影响的数值模拟 [J]. 中国有色金属学报, 2017, 27: 514)
[25]
Zhang X J, Liu X H, Wu Y F, et al.Simulation on temperature field for solidification process of horizontal core-filling continuous casting of copper clad aluminum bars[J]. Foundry Eng., 2013, 37(3): 10(张小军, 刘新华, 吴永福等. 铜包铝扁坯水平连铸直接复合成形过程温度场的数值模拟 [J]. 铸造工程, 2013, 37(3): 10)
[26]
Kim T G, Lee Z H.Time-varying heat transfer coefficients between tube-shaped casting and metal mold[J]. Int. J. Heat Mass Transfer, 1997, 40: 3513
[27]
Yu C X.Engineering Heat Transfer Science [M]. Mount Emei: Southwest Jiaotong University Press, 1990: 8(于承训. 工程传热学 [M]. 峨眉山: 西南交通大学出版社, 1990: 8)
[28]
Dai G S.Heat Transfer [M]. 2nd Ed., Beijing: Higher Education Press, 1999: 3(戴锅生. 传热学 [M]. 第2版. 北京: 高等教育出版社, 1999: 3)
[29]
Weckman D C, Niessen P.A numerical simulation of the D. C. continuous casting process including nucleate boiling heat transfer[J]. Metall. Trans., 1982, 13B: 593
[30]
Rohsenow W, Hartnett J P.Handbook of Heat Transfer[M]. New York: McGraw-Hill, 1973: 5
[31]
Pioro I L.Experimental evaluation of constants for the Rohsenow pool boiling correlation[J]. Int. J. Heat Mass Transfer, 1999, 42: 2003