Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (3): 470-484    DOI: 10.11900/0412.1961.2017.00460
Orginal Article Current Issue | Archive | Adv Search |
Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites
Xinhua LIU1,2, Huadong FU1,2, Xingqun HE1, Xintong FU1, Yanqing JIANG1, Jianxin XIE1,2()
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites. Acta Metall Sin, 2018, 54(3): 470-484.

Download:  HTML  PDF(6468KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High performance Cu-Al composites have widely applied in aviation, aerospace and other fields, at the same time the continuous casting as one of composite forming technologies has been also developed in recent years. Obviously, it is an effective and cheap way to numerically simulate the solidification process of short process continuous casting for manufacturing Cu-Al composites before fabricating them. To meet the need of simulation, in this work, a numerical method for theoretically describing the Cu-Al composite forming in continuous casting processes was proposed. The vertical continuous casting of copper clad aluminum bar billet and the horizontal continuous casting of copper and aluminum composite plate were performed. Based on this method, the steady state temperature fields in solidification processes in the above two kinds of casting technologies were numerically simulated by using proCAST software package. In this work the effects of the theoretical parameters on the steady state temperature fields and then on the performance of Cu-Al composites fabricated by using the above two casting technologies were carefully discussed. It is found that the experimental and simulated results are in good agreement. For the cases of the copper clad aluminum bar billet with a cross section of 100 mm×100 mm, and the copper or aluminum plate with a thickness of 20 mm and a width of 75 mm (coat thicknesses of 4~7 mm), the feasible parameters for producing high performance Cu-Al composites, for examples, are as follows: for the former the temperature of copper liquid is 1250 ℃, the temperature of aluminum liquid is 750 ℃, the length of crystallizer is 200 mm, the length of graphite mandrel tube is 290 mm, the flux of the first cooling water is 1600~2000 L/h, the flux of the second cooling water is 900~1300 L/h, the distance from the second cooling water to the exit of crystallizer is 30 mm, and the withdrawing speed is 60~80 mm/min. For the latter the temperature of copper melt was 1250 ℃, the temperatures of aluminum melt are 760~800 ℃, the withdrawing speed is 40~80 mm/min, and the length of aluminum duct is 20 mm.

Key words:  Cu-Al composites      continuous casting composite forming      temperature field      numerical simulation     
Received:  01 November 2017     
Fund: Supported by National High Technology Research and Development Program of China (No.2013AA030706), Beijing Science and Technology (No.Z141100004214003) and Science and Technology Cooperation Project of Yunnan Province (No.2015IB012)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00460     OR     https://www.ams.org.cn/EN/Y2018/V54/I3/470

Fig.1  Schematic diagram of the vertical core-filling continuous casting (VCFCC) process for fabricating copper clad aluminum (CCA) composites (1—aluminum liquid holding furnace, 2—aluminum liquid, 3—graphite mandrel tube, 4—copper liquid holding furnace, 5—copper liquid, 6—graphite casting mold, 7—crystallizer, 8—secondary cooling water, 9—CCA composite casting rod, 10—drawing machine)
Fig.2  Geometry of the VCFCC processing model for fabricating CCA composites (1—graphite casting mold, 2—tcopper sheath, 3—graphite mandrel tube, 4—water-cooling copper chiller of crystallizer, 5—aluminum core, 6—copper liquid, 7—aluminum liquid, 8—crucible, L0—length of crystallizer; L1—copper solidification position; L2—aluminum solidification position; L3—length of compound zone) (a) external form of 3D Geometric model (b) internal form of 3D Geometric model
Fig.3  Schematics of the boundary conditions (left) and interface conditions (right) for simulation of the steady-state temperature in VCFCC processing for manufacturing CCA composites (1~6 are the boundary conditions for simulation of temperature of aluminum liquid, temperature of copper liquid, primary cooling water, secondary cooling water and geometric symmetry plane, respectively. I~IV are the interfaces between the aluminum core and the graphite mandrel tube, between the solidified copper sheath and the graphite mandrel tube, between the solidified copper sheath and the graphite cast mould, and between the graphite cast mould and the copper chiller of crystallizer, respectively)
Fig.4  Simulated steady state temperature field in solidification process of VCFCC for producing CCA composites, using proCAST software package (TAl—aluminum liquid temperature) (a) temperature nephogram (b) solidification map
L0 / mm s / mm h / mm v / (mm?min-1) L2 / mm
80 50 180 130 132.0
100 50 180 130 120.8
100 10 180 130 72.2
100 50 180 130 70.8
100 50 180 100 93.8
100 50 190 130 106.9
150 50 180 130 47.7
150 10 180 130 47.5
150 10 240 130 8.1
150 10 180 100 30.5
150 10 240 100 -12.2
200 50 270 130 99.8
200 50 310 100 35.4
200 10 270 130 48.3
200 10 310 100 16.8
250 50 310 130 103.5
250 50 380 100 16.2
250 10 310 130 64.5
250 10 380 100 -5.8
Table 1  Effect of the length of crystallizer on solidified position of copper and aluminum
h
mm
Q1
Lh-1
Q2
Lh-1
TAl
v
mmmin-1
L1
mm
L2
mm
L3
mm
Ts
250 1600 900 750 60 73.5 78.15 67.08 740
270 1600 900 750 60 73.5 69.26 47.61 710
290 1600 900 750 60 73.5 35.82 27.92 685
310 1600 900 750 60 73.5 18.62 5.93 650
330 1600 900 750 60 73.4 6.43 -3.24 630
Table 2  Effect of length of mandrel tube on solidified position of copper and aluminum
No. h
mm
Q1
Lh-1
Q2
Lh-1
TAl
v
mmmin-1
L1
mm
L2
mm
L3
mm
Ts
1 290 1400 900 750 60 72.5 37.94 28.95 690
2 290 1600 900 750 60 74.0 35.82 27.92 685
3 290 1800 900 750 60 74.5 34.95 26.83 683
4 290 2000 900 750 60 74.5 33.86 26.82 680
Table 3  Effect of flux of primary cooling water on solidified position of copper and aluminum
No. h
mm
Q1
Lh-1
Q2
Lh-1
TAl
v
mmmin-1
L1
mm
L2
mm
L3
mm
Ts
1 290 1600 700 750 60 75.5 35.94 27.93 690
2 290 1600 900 750 60 75.0 35.82 27.92 685
3 290 1600 1100 750 60 73.5 35.12 26.83 687
4 290 1600 1300 750 60 73.5 34.95 26.83 684
5 290 1600 1500 750 60 73.5 33.84 25.83 680
Table 4  Effect of flux of secondary cooling water on solidified position of copper and aluminum
No. h
mm
Q1
Lh-1
Q2
Lh-1
TAl
v
mmmin-1
L1
mm
L2
mm
L3
mm
Ts
1 290 1600 900 750 40 55.5 -11.51 0 -
2 290 1600 900 750 60 75.0 35.82 27.92 685
3 290 1600 900 750 80 80.0 59.07 51.85 725
4 290 1600 900 750 100 81.0 76.93 62.97 770
5 290 1600 900 750 120 82.5 87.49 70.39 790
Table 5  Effect of continuous casting speed on solidified position of copper and aluminum
Fig.5  Cross section morphologies of CCA samples manufactured in different cooling water flows (a) 1000 L/h (b) 1600 L/h (c) 2000 L/h
Fig.6  Schematic of horizontal continuous casting process for fabricating Cu-Al composite slab
Fig.7  Geometry of horizontal continuous casting for fabricating Cu-Al composite slab
Fig.8  Effects of length of aluminum liquid ducts on solidification position of copper and aluminum in horizontal continuous casting as shown in Fig.7 (a1, a2) 10 mm (b1, b2) 20 mm (c1, c2) 30 mm
Fig.9  Effects of casting speeds on solidification position of copper and aluminum in horizontal continuous casting as shown in Fig.7 (a1, a2) 40 mm/min (b1, b2) 60 mm/min (c1, c2) 80 mm/min (d1, d2) 100 mm/min (e1, e2) 120 mm/min
Fig.10  Effects of temperatures of aluminum liquid on solidification position of copper and aluminum in horizontal continuous casting as shown in Fig.7 (a1, a2) 760 ℃ (b1, b2) 780 ℃ (c1, c2) 800 ℃ (d1, d2) 820 ℃ (e1, e2) 850 ℃
Fig.11  Morphologies of binding layers (a1~d1) and surface quality (a2~d2) of slabs with casting speeds of 40 mm/min (a1, a2), 60 mm/min (b1, b2), 80 mm/min (c1, c2) and 100 mm/min (d1, d2) in horizontal continuous casting as shown in Fig.7
[1] Mitsugi S, Oelschlagel D, Miyake Y, et al.Properties of copper-clad aluminum bus bar[J]. Hitachi Rev., 1974, 23: 261
[2] Gibson A.Emerging applications for copper-clad steel and aluminum wire[J]. Wire J. Int., 2008, 41: 142
[3] Luo Y B, Liu X H, Xie J X.Effects of sectional form and configuration on the conductivity of copper cladding aluminum bars with a rectangle section[J]. J. Univ. Sci. Technol. Beijing, 2009, 30: 1292(罗奕兵, 刘新华, 谢建新. 矩形截面铜包铝导电排的导电性能及断面形状结构的影响 [J]. 北京科技大学学报, 2009, 30: 1292)
[4] Wan T Y.The production method of copper-plating aluminum wire and its products[J]. Alum. Proc., 1992,(3): 53(万天一. 镀铜铝线及其制品的生产方法 [J]. 铝加工,1992, (3): 53)
[5] Dion P A.Method of metal cladding [P]. US Pat, US3408727, 1968
[6] Wang Y H, Wu Y Z, Ma Y Q, et al.Microstructure and mechanical properties of copper clad aluminum wire by drawing at room temperature[J]. Chin. J. Nonferrous Met., 2006, 16: 2066(王跃华, 吴云忠, 马永庆等. 铜包铝线材室温拉变形后的显微组织和力学性能 [J]. 中国有色金属学报, 2006, 16: 2066)
[7] Rhee K Y, Han W Y, Park H J.Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics[J]. Mater. Sci. Eng., 2004, A384: 70
[8] Li X B, Zu G Y, Wang P.Microstructural development and its effects on mechanical properties of Al/Cu laminated composite[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 36
[9] Li L, Nagai K, Yin F X.Progress in cold roll bonding of metals[J]. Sci. Technol. Adv. Mater., 2008, 9: 023001
[10] Yang Y S, Yang D D, Yang M, et al.Hot extrusion forming process of copper and aluminum composite plate[J]. J. Henan Univ. Sci. Technol.: Nat. Sci., 2011, 32(6): 1(杨永顺, 杨栋栋, 杨明等. 铜铝复合板热挤压成形工艺 [J]. 河南科技大学学报: 自然科学版, 2011, 32(6): 1)
[11] Zhu X H, Lv X F, Chen G Q, et al.Failure analysis on explosive welded composite plate[J]. Heat Treat. Met., 2014, 68(1): 144(朱晓红, 吕新峰, 陈国琦等. 复合板爆炸焊接的失效分析 [J]. 金属热处理, 2014, 68(1): 144)
[12] Chen M, Wang X Y, Dong T Y, et al.Performance analysis on interlayer of high purity aluminum and copper bonded by explosive welding[J]. Nonferrous Metall., 2014,(5): 56, 2014, (5): 56)
[13] Lu W K, Xie J P, Wang A Q, et al.Effects of annealing temperature on interfacial microstructure and mechanical properties of Cu/Al roll-casted composite plate[J]. Mater. Mech. Eng., 2014, 38(3): 14(路王珂, 谢敬佩, 王爱琴等. 退火温度对铜铝铸轧复合板界面组织和力学性能的影响 [J]. 机械工程材料, 2014, 38(3): 14)
[14] Cui J Z.Fabrication of aluminum-stainless steel compound belt by liquid-solid phase rolling[J]. Mater. Rev., 2001, 15(2): 14(崔建忠. 液-固相轧制复合法生产铝不锈钢复合带[J]. 材料导报, 2001, 15(2): 14)
[15] Zhang H, Xie J P, Shang Z P, et al.Bonding interface structure and properties of Cu-Al-Cu compound plate fabricated by cast-rolled process[J]. J. Henan Univ. Sci. Technol.: Nat. Sci. Ed., 2015, 36(3): 1(张衡, 谢敬佩, 尚郑平等. 铸轧法制备铜-铝-铜复合板的界面组织与性能 [J]. 河南科技大学学报: 自然科学版, 2015, 36(3): 1)
[16] Xie J X, Liu X H, Liu X F, et al. Horizontal continuous direct composite cast forming equipment and technology of a cladding materials [P]. Chin Pat, 200610112817.3, 2006(谢建新, 刘新华, 刘雪峰等.一种包复材料水平连铸直接复合成形设备与工艺 [P]. 中国专利, 200610112817.3, 2006)
[17] Xie J X, Liu X H, Liu X F, et al. A high performance rectangle cross section copper cladding aluminum composite electric bus bar and manufacturing process [P]. Chin Pat, 200810057668.4, 2008(谢建新, 刘新华, 刘雪峰等.一种高性能铜包铝矩形横断面复合导电母排及其制备工艺 [P]. 中国专利, 200810057668.4, 2008)
[18] Wu Y F, Liu X H, Xie J X, et al.Copper cladding aluminum composite materials with rectangle section fabricated by horizontal core-filling continuous casting[J]. Chin. J. Nonferrous Met., 2012, 22: 2500(吴永福, 刘新华, 谢建新等. 矩形断面铜包铝复合材料水平连铸直接复合成形 [J]. 中国有色金属学报, 2012, 22: 2500)
[19] Xie J X, Liu X H, Huang H Y.Horizontal core-filling continuous casting of copper clad aluminum conductor materials: Properties and applications[J]. Light Met. Age, 2015, 73: 64
[20] Su Y J, Liu X H, Huang H Y, et al.Effects of processing parameters on the fabrication of copper cladding aluminum rods by horizontal core-filling continuous casting[J]. Metall. Mater. Trans., 2011, 42B: 104
[21] Su Y J, Liu X H, Huang H Y, et al.Interfacial microstructure and bonding strength of copper cladding aluminum rods fabricated by horizontal core-filling continuous casting[J]. Metall. Mater. Trans., 2011, 42A: 4088
[22] Xie J X, Wu C J, Liu X F, et al. A novel forming process of copper cladding aluminum composite materials with core-filling continuous casting [J]. Mater. Sci. Forum., 2007, 539-543: 956
[23] Hu N B, Liu Y W, Jia Z X, et al.Interface methods between HyperMesh and ProCAST[J]. Spec. Cast Nonferrous Alloys, 2014, 34: 143(胡宁波, 刘耀蔚, 贾志欣等. HyperMesh与ProCAST接口方式的研究 [J]. 特种铸造及有色合金, 2014, 34: 143)
[24] Liu X H, Fu X T, Fu H D, et al.Numerical simulation analysis of effects of processing parameters on forming process of vertical continuous core-filling casting for copper clad aluminum billets with large section[J]. Chin. J. Nonferrous Met., 2017, 27: 514(刘新华, 付新彤, 付华栋等. 大断面铜包铝棒坯立式连铸成形工艺参数对连铸复合过程影响的数值模拟 [J]. 中国有色金属学报, 2017, 27: 514)
[25] Zhang X J, Liu X H, Wu Y F, et al.Simulation on temperature field for solidification process of horizontal core-filling continuous casting of copper clad aluminum bars[J]. Foundry Eng., 2013, 37(3): 10(张小军, 刘新华, 吴永福等. 铜包铝扁坯水平连铸直接复合成形过程温度场的数值模拟 [J]. 铸造工程, 2013, 37(3): 10)
[26] Kim T G, Lee Z H.Time-varying heat transfer coefficients between tube-shaped casting and metal mold[J]. Int. J. Heat Mass Transfer, 1997, 40: 3513
[27] Yu C X.Engineering Heat Transfer Science [M]. Mount Emei: Southwest Jiaotong University Press, 1990: 8(于承训. 工程传热学 [M]. 峨眉山: 西南交通大学出版社, 1990: 8)
[28] Dai G S.Heat Transfer [M]. 2nd Ed., Beijing: Higher Education Press, 1999: 3(戴锅生. 传热学 [M]. 第2版. 北京: 高等教育出版社, 1999: 3)
[29] Weckman D C, Niessen P.A numerical simulation of the D. C. continuous casting process including nucleate boiling heat transfer[J]. Metall. Trans., 1982, 13B: 593
[30] Rohsenow W, Hartnett J P.Handbook of Heat Transfer[M]. New York: McGraw-Hill, 1973: 5
[31] Pioro I L.Experimental evaluation of constants for the Rohsenow pool boiling correlation[J]. Int. J. Heat Mass Transfer, 1999, 42: 2003
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[11] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[12] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[13] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[14] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[15] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
No Suggested Reading articles found!