Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (5): 773-788    DOI: 10.11900/0412.1961.2017.00525
Special Issue for the Solidification of Metallic Materials Current Issue | Archive | Adv Search |
Solutions in Improving Homogeneities of Heavy Ingots
Jun LI1,2, Mingxu XIA1, Qiaodan HU1, Jianguo LI1,2()
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China
Download:  HTML  PDF(7005KB) 
Export:  BibTeX | EndNote (RIS)      

The inhomogeneity in large ingots not only decides the final properties of the product, but also restricts downstream hot working processing severely. It is very important to improve the homogeneity of ingots for saving energy, improving material utilization ratio, increasing performance of component, and the construction of key equipment. In this paper, the general inhomogeneity problem in large ingots, such as macrosegregation, inclusion, shrinkage porosity, and large crystal have been introduced. The evolutions of this inhomogeneity in the subsequent hot working processing have also been discussed, based on which the concept of homogeneity window for large ingots has been proposed. The research progress of numerical simulation of macrosegregation in large ingots and some new methods for improving the homogeneity of large ingot have also been introduced and analyzed. Three fundamental reasons for the inhomogeneity of ingots were concluded, i.e. the uneven cooling rate, the uncontrollable multiphase flow, and the solute redistribution during solidification. Aiming at these three fundamental reasons, a novel casting method called layer casting (LC), which has been proposed by our team recently, was introduced to modify the serious inhomogeneity problem in large ingots. In this method, molten alloy was poured into the mold separately and layer upon layer. As soon as the poured molten alloy solidified to a critical volume fraction range, the next layer amount of molten alloy was poured into the mold. For each layer, the mass, composition, and pouring temperature of poured molten alloy could be artificially designed and controlled based on the target homogeneity window. Both experiment and numerical simulated results shown that, in comparison with conventional ingot fabrication method, the LC method can significantly decrease the uncontrollable multiphase flow, uniform the cooling rate, and improve the solute redistribution, subsequently, improve the homogeneity of ingots. For large ingots fabrication, the LC method has the potential to substantially decrease the energy consumption, materials consumption, and the investment of large equipment. Its wide application prospect for high quality large ingots is also expected.

Key words:  heavy ingot      macrosegregation      numerical simulation      cast defect      layer casting     
Received:  11 December 2017     
ZTFLH:  TG244  
Fund: Supported by National Key Research and Development Program of China (No.2017YFB0305300), Joint Funds of the National Natural Science Foundation of China (No.U1660203), National Natural Science Foundation of China (No.51404152) and Shanghai Pujiang Program (No.14PJ1404800)

Cite this article: 

Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots. Acta Metall Sin, 2018, 54(5): 773-788.

URL:     OR

Fig.1  Schematic of the influence of composition and ingot size on inhomogeneity of ingots
Fig.2  Simulated distributions of C (a) and Mn (b) contents varied with annealing time for SA508-3 alloy
Fig.3  Variation of required weight of ingot with final weight of forging (h—thickness, SR—surface radius)
Fig.4  Schematic of the homogeneity control window of nuclear island closure head of AP1000 (Each symbol indicates one parameter. All solid symbols indicate the failure of materials. σb—tensile strength, δ—elongation, Akv—impact energy)
Fig.5  Schematic of the relationship of pouring amount and solidification fraction with time elapsed for mould casting
Fig.6  Schematic of the smelting and pouring processing of 600 t steel ingot[22]
Fig.7  Pouring processing of vacuum multi-ladle casting
Fig.8  Carbon distribution along ingot centerlines of large ingots for different pouring methods: conventional vs multiple pouring (MP)[29]
Fig.9  Typical characteristics of macrosegregation (a) and sulphur print (b) in large scale ingot[30] and schematic macrosegregation in ingot (c)[31]
Fig.10  Final macrosegregation color maps of 3.25 t steel ingot predicted by simplified dendritic model (a), globular model (b), and the comparison between simulated and experimental macrosegregation distributions along the central line for different models (c)[84]
Fig.11  Macrosegregation of 55 t steel ingot[83]
(a) 2D case with 4-phase shrinkage model (b) experimental result(c) shrinkage (d) segregation index along centerline
Fig.12  Characteristic of 3D A-segregation[83]
(a) 3D channel segregation pattern
(b) longitudinal section of channel segregation
(c) experimental A-segregation
Fig.13  Schematic of layer casting (LC) (c1, c2,?, cn—melt composition of each ladle; T1, T2,?,Tn—pouring temperature of each ladle; t1, t2,?, tn—pouring time interval for each ladle)[88]
Fig.14  Schematic of layer casting procedure on 600 t steel ingot with four 50 t furnaces (The whole ingot was casted by 12 layer pouring)
Fig.15  As-cast grain structures of conventional processing (CP) ingot (a1) and LC ingot (a2), microstructural of CP ingot (b-a1-1, b-a1-2 and b-a1-3) and LC ingot (b-a2-1, b-a2-2 and b-a2-3) and distribution of grain size[89]
Fig.16  Distribution of copper composition in term of segregation index (cmix-c0/c0) of CP (a1) and LC (a2) ingots and distribution of segregation index along the centerline (b)[89]
Fig.17  Macrosegregation distributions curves, on which the macrosegregation indexs and corresponding coordinates along the center line of some points are given, along the center line of 100 t steel ingots fabricated by conventional casting method, LC method of 5 ladles and 10 ladles, predicted by numerical simulations[88]
[1] Zhao J W, Chen X W, Shi Y L, et al.The current stage and development trend of forging technology and defect control for heavy forging[J]. China Metalform. Equip. Manuf. Technol., 2009, 44(4): 23(赵俊伟, 陈学文, 史宇麟等. 大型锻件锻造工艺及缺陷控制技术的研究现状及发展趋势[J]. 锻压装备与制造技术, 2009, 44(4): 23)
[2] Kurz W, Fisher D, translated by Li J G, Hu Q D. Fundamentals of solidification [M]. Beijing: Higher Education Press, 2010: 1(Kurz W, Fisher D J著, 李建国, 胡侨丹译. 凝固原理 [M]. 北京: 高等教育出版社, 2010: 1)
[3] Zhang Y.Urgency of domestic production of heavy casting and forging in China[J]. Heavy Mach., 2009, (4): 1(张扬. 我国大型铸锻件应坚持国产化之路[J]. 重型机械, 2009, (4): 1)
[4] Li D Z, Chen X Q, Fu P X, et al.Inclusion flotation-driven channel segregation in solidifying steels[J]. Nat. Commun., 2015, 5: 5572
[5] Ding Z Y, Hu Q D, Zeng L, et al.Hot deformation characteristics of as-cast high-Cr ultra-super-critical rotor steel with columnar grains[J]. Int. J. Miner. Metall. Mater., 2016, 23: 1275
[6] Bitterlin M, Loucif A, Charbonnier N, et al.Cracking mechanisms in large size ingots of high nickel content low alloyed steel[J]. Eng. Fail. Anal., 2016, 68: 122
[7] Zhang X X, Cui Z S, Chen W, et al.A criterion for void closure in large ingots during hot forging[J]. J. Mater. Proc. Technol., 2009, 209: 1950
[8] Iron Steel Institute.Report on the heterogeneity of steel ingots[J]. J. Iron. Steel. I., 1926, 113: 39
[9] Olsson A, West R, Fredriksson H.Macrosegregation in ingots[J]. Scand. J. Metall., 1986, 15: 104
[10] Chvorinov N.Theory of the solidification of castings[J]. Giesserei, 1940, 27: 177
[11] Zhu Y X.Low segregation superalloys[J]. Trans. Met. Heat Treat., 1997, 18(3): 16(朱耀霄. 低偏析高温合金[J]. 金属热处理学报, 1997, 18(3): 16)
[12] Zeng L, Zhang W, Ji Y L, et al.Improving cooling rate during solidification by eliminating the metal-mold interfacial gap[J]. Metall. Mater. Trans., 2015, 46A: 2819
[13] Ling Y F, Hu C J.Application of inner chilling on heavy thick wall steel castings[J]. China Found. Mach. Technol., 2010, (2): 36(凌云飞, 胡昌军. 内冷铁在厚大铸钢件上的应用[J]. 中国铸造装备与技术, 2010, (2): 36)
[14] Sang B G, Kang X H, Li D Z.A novel technique for reducing macrosegregation in heavy steel ingots[J]. J. Mater. Process. Technol., 2010, 210: 703
[15] Zhao J, Yu J H, Li Q J, et al.Structure of slowly solidified 30Cr2Ni4MoV casting with surface pulsed magneto-oscillation[J]. Mater. Sci. Technol., 2015, 31: 1589
[16] Zeng L, Xu M Q, Ma X R, et al.Grain refinement and delta ferrite reduction of high Cr steel ingots by thermal control[J]. ISIJ Int., 2014, 54: 2302
[17] Wang C H, Zhang J, Liu L, et al.Microstructure evolution of directionally solidified DZ125 superalloy with melt superheating treatment[J]. J. Alloys Compd., 2010, 508: 440
[18] Liao X L, Zhao Q J, Luo J, et al.Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Mater., 2007, 55: 3103
[19] Cui J Z, Zhang Z Q, Le Q Z.DC casting of light alloys under magnetic fields[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 2046
[20] Liu Q M, Zhai Q J, Qi F P, et al.Effects of power ultrasonic treatment on microstructure and mechanical properties of T10 steel[J]. Mater. Lett., 2007, 61: 2422
[21] Fu H, Zhou Q, Tan S L.Influence of mechanical vibration on solidification structures of ignition-proof magnesium alloy AZ91D-3Ca[J]. Spec. Cast. Nonferrous Alloys, 2013, 33: 565(付浩, 周全, 谭水淋. 机械振动对AZ91D-3Ca镁合金凝固组织的影响[J]. 特种铸造及有色合金, 2013, 33: 565)
[22] Jiang X L.Research and application of extreme manufacturing technology for 600 tonner low segregation and high purity heavy alloy ingot[J]. Heavy Cast. Forg., 2013, (5): 15(蒋新亮. 600吨级低偏析高纯净特大合金钢锭极限制造技术研究与应用[J]. 大型铸锻件, 2013, (5): 15)
[23] Doub V S, Romashkin A N, Malginov A N.Main trends in the development of technology for casting steel into ingots[J]. Metallurgist, 2013, 57: 487
[24] Gao J J, Ba J T.Research on manufacturing technology of super large steel ingot[J]. Heavy Cast. Forg., 2013, (2): 7(高建军, 巴钧涛. 超大型钢锭制造技术研究[J]. 大型铸锻件, 2013, (2): 7)
[25] Tanaka Y, Sato I.Development of high purity large forgings for nuclear power plants[J]. J. Nucl. Mater., 2011, 417: 854
[26] Tu W T, Zhang X, Shen H F, et al.Numerical simulation on multiple pouring process for a 292 t steel ingot[J]. China Found., 2014, 11: 52
[27] Tu W T, Shen H F, Liu B C.Modelling of macrosegregation in a 231-ton steel ingot with multi-pouring process[J]. Mater. Res. Innov., 2015, 19(Suppl.4): S59
[28] Li J, Liu D R, Kang X H, et al.Numerical simulation of delayed pouring technique for a 360t heavy steel ingot[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2012, 33: 012092
[29] Tateno M.Development of large size high quality steels and their future prospects as "Near Net Shape" material[J]. Trans. Iron Steel Inst. Jpn., 1985, 25: 97
[30] Lesoult G. Macrosegregation in steel strands and ingots: Characterisation, formation and consequences [J]. Mater. Sci. Eng., 2005, A413-414: 19
[31] Flemings M C.Principles of control of soundness and homogeneity of large ingots[J]. Scand. J. Metall., 1976, 5: 1
[32] Pickering E J, Chesman C, Al-Bermani S, et al.A comprehensive case study of macrosegregation in a steel ingot[J]. Metall. Mater. Trans., 2015, 46B: 1860
[33] Duan Z H, Tu W T, Shen B Z, et al.Experimental measurements for numerical simulation of macrosegregation in a 36-ton steel ingot[J]. Metall. Mater. Trans., 2016, 47A: 3597
[34] Kawai M.On the Λ segregated zone of large carbon steel ingot (II): Mechanism of formation of the Λ segregated line (Part 2)[J]. ISIJ Int., 1956, 42: 19
[35] Li J, Wu M H, Ludwig A, et al.Simulation of macrosegregation in a 2.45-ton steel ingot using a three-phase mixed columnar-equiaxed model[J]. Int. J. Heat Mass Tran., 2014, 72: 668
[36] Flemings M C.Solidification processing[M]. New York: McGraw-Hill Book Company, 1974
[37] Shen H F, Chen K X, Liu B C.Numerical simulation of macrosegregation in steel ingot casting[J]. Acta Metall. Sin., 2018, 54: 151(沈厚发, 陈康欣, 柳百成. 钢锭铸造过程宏观偏析数值模拟[J]. 金属学报, 2018, 54: 151)
[38] Shibata H, Poirier D R, Emi T.Modeling the behavior of Al2O3 inclusions during the dendritic solidification of steel[J]. ISIJ Int., 1998, 38: 339
[39] Qi J H, Wu J, Suo J P, et al.Discussion on the research method of fine inclusions in steel[J]. Metall. Anal., 2010, 30(10): 1(齐江华, 吴杰, 索进平等. 钢中细小夹杂物的研究方法探讨[J]. 冶金分析, 2010, 30(10): 1)
[40] Zhang L F, Thomas B G.State of the art in the control of inclusions during steel ingot casting[J]. Metall. Mater. Trans., 2006, 37B: 733
[41] Liu H W, Fu P X, Kang X H, et al.Formation mechanism of shrinkage and large inclusions of a 70t 12Cr2Mo1 heavy steel ingot[J]. China Found., 2014, 11: 46
[42] Wang M L, Cheng G G, Zhao P, et al.Formation thermodynamics of titanium oxide during solidification of low carbon steel containing titanium[J]. J. Iron Steel Res., 2004, 16(3): 40(王明林, 成国光, 赵沛等. 含钛低碳钢凝固过程中氧化钛形成的热力学[J]. 钢铁研究学报, 2004, 16(3): 40)
[43] Park S C, Jung I H, Oh K S, et al.Effect of Al on the evolution of non-metallic inclusions in the Mn-Si-Ti-Mg deoxidized steel during solidification: Experiments and thermodynamic calculations[J]. ISIJ Int., 2004, 44: 1016
[44] Gu L M, Chen Z P, Xu Y T, et al.Thermodynamic analysis of formation of inclusions in super purity ferritic stainless steel[J]. J. Chin. Rare Earth Soc., 2010, 28(Spec. Issue): 16(顾磊明, 陈兆平, 徐迎铁等. 超纯铁素体不锈钢中夹杂物形成的热力学分析[J]. 中国稀土学报, 2010, 28(专辑): 16)
[45] Wang H P, Sun L F, Peng B, et al.Inclusions for ultra-pure ferritic stainless steels containing 21% chromium[J]. J. Iron Steel Res. Int., 2013, 20: 70
[46] Henschel S, Gleinig J, Lippmann T, et al.Effect of crucible material for ingot casting on detrimental non-metallic inclusions and the resulting mechanical properties of 18CrNiMo7-6 steel[J]. Adv. Eng. Mater., 2017, 19: 1700199
[47] Liu J H, Zhuang C L, Cui X N, et al.Inclusion distribution in ingots investigated by dissection[J]. J. Iron Steel Res. Int., 2014, 21: 660
[48] Zhu H C, Li H B, Zhang S C, et al.Numerical simulation of Mo macrosegregation during ingot casting of high-Mo austenitic stainless steel[J]. Ironmaking Steelmaking, 2015, 42: 748
[49] Hu H J, Yang M B, Luo J, et al.Application of the software ProCAST in the casting of solidification simulation[J]. Mater. Sci. Technol., 2006, 14: 293(胡红军, 杨明波, 罗静等. ProCAST软件在铸造凝固模拟中的应用[J]. 材料科学与工艺, 2006, 14: 293)
[50] Zhou J X, Liu R X, Chen L L, et al.Application of inteCAST software to permanent mold casting[J]. Foundry, 2003, 52: 616(周建新, 刘瑞祥, 陈立亮等. 华铸CAE软件在金属型铸造中的应用[J]. 铸造, 2003, 52: 616)
[51] Zhang Z, Yang J.Application of CASTsoft in low pressure casting[J]. Mechan. Manage. Dev., 2006, (3): 53(张诤, 杨晶. CASTsoft软件在低压铸造中的应用[J]. 机械管理开发, 2006, (3): 53)
[52] Yang J A, Duan Z H, Shen H F, et al.Validation of CAFE model with experimental macroscopic grain structures in a 36-ton steel ingot [A]. Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017)[C]. Cham: Springer, 2017
[53] Flemings M C, Nereo G E.Macrosegregation, Part I[J]. Trans. Met. Soc. AIME, 1967, 242: 1449
[54] Fujii T, Poirier D R, Flemings M C.Macrosegregation in a multicomponent low alloy steel[J]. Metall. Trans., 1979, 10B: 331
[55] Ridder S D, Kou S, Mehrabian R.Effect of fluid flow on macrosegregation in axi-symmetric ingots[J]. Metall. Trans., 1981, 12B: 435
[56] Szekely J, Jassal A S.An experimental and analytical study of the solidification of a binary dendritic system[J]. Metall. Trans., 1978, 9B: 389
[57] Bennon W D, Incropera F P.A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation[J]. Int. J. Heat Mass Transfer, 1987, 30: 2161
[58] Beckermann C, Viskanta R.Double-diffusive convection during dendritic solidification of a binary mixture[J]. Physicochem. Hydrodyn., 1988, 10: 195
[59] Ganesan S, Poirier D R.Conservation of mass and momentum for the flow of interdendritic liquid during solidification[J]. Metall. Trans., 1990, 21B: 173
[60] Voller V R, Brent A D, Prakash C.The modelling of heat, mass and solute transport in solidification systems[J]. Int. J. Heat Mass Transfer, 1989, 32: 1719
[61] Ahmad N, Rappaz J, Desbiolles J L, et al.Numerical simulation of macrosegregation: A comparison between finite volume method and finite element method predictions and a confrontation with experiments[J]. Metall. Mater. Trans., 1998, 29A: 617
[62] Chiang K C, Tsai H L.Interaction between shrinkage-induced fluid flow and natural convection during alloy solidification[J]. Int. J. Heat Mass Transfer, 1992, 35: 1771
[63] Schneider M C, Beckermann C.Formation of macrosegregation by multicomponent thermosolutal convection during the solidification of steel[J]. Metall. Mater. Trans., 1995, 26A: 2373
[64] Gu J P, Beckermann C.Simulation of convection and macrosegregation in a large steel ingot[J]. Metall. Mater. Trans., 1999, 30A: 1357
[65] Combeau H, Zalo?nik M, Hans S, et al.Prediction of macrosegregation in steel ingots: Influence of the motion and the morphology of equiaxed grains[J]. Metall. Mater. Trans., 2009, 40B: 289
[66] Kumar A, Zalo?nik M, Combeau H.Prediction of equiaxed grain structure and macrosegregation in an industrial steel ingot: Comparison with experiment[J]. Int. J. Adv. Eng. Sci. Appl. Mathemat., 2010, 2: 140
[67] Combeau H, Kumar A, Zaloznik M, et al.Macrosegregation prediction in a 65 ton steel ingot [A]. 1st International Conference on Ingot Casting, Rolling and Forging[C]. Brüssel-Saal, 2012
[68] Li W S, Shen H F, Liu B C.Numerical simulation of macrosegregation in steel ingots using a two-phase model[J]. Int. J. Min. Metall. Mater., 2012, 19: 787
[69] Kang J, Zhang C, Wang T, et al.Numerical simulation of the macrostructure evolution of a heavy steel ingot[J]. Mater. Sci. Technol., 2017, 33: 574
[70] Duan Z H, Shen H F, Liu B C.A numerical study of the effect of multiple pouring on macrosegregation in a 438-ton steel ingot[J]. Acta. Metall. Sin.(Engl. Lett.), 2015, 28: 1123
[71] Liu D R, Kang X H, Fu P X, et al.Modeling of macrosegregation in steel ingot: Influence of mold shape and melt superheat[J]. Kovove Mater., 2011, 49: 143
[72] Liu D R, Kang X H, Sang B G, et al.Numerical study of macrosegregation formation of ingot cast in normal sand mold and water-cooled sand mold[J]. Acta Metall. Sin.(Engl. Lett.), 2011, 24: 54
[73] Cao Y F, Chen Y, Li D Z.Formation mechanism of channel segregation in carbon steels by inclusion flotation: X-ray microtomography characterization and multi-phase flow modeling[J]. Acta Mater., 2016, 107: 325
[74] Li J, Wu M, Hao J, et al.Simulation of channel segregation using a two-phase columnar solidification Model-Part I: Model description and verification[J]. Comput. Mater. Sci., 2012, 55: 407
[75] Li J, Wu M, Hao J, et al.Simulation of channel segregation using a two-phase columnar solidification model-Part II: Mechanism and parameter study[J]. Comput. Mater. Sci., 2012, 55: 419
[76] Wu M H, Ludwig A.A three-phase model for mixed columnar-equiaxed solidification[J]. Metall. Mater. Trans., 2006, 37A: 1613
[77] Ahmadein M, Wu M, Ludwig A.Analysis of macrosegregation formation and columnar-to-equiaxed transition during solidification of Al-4wt.% Cu ingot using a 5-phase model[J]. J. Cryst. Growth, 2015, 417: 65
[78] Wu M H, Ludwig A, Kharicha A.Simulation of as-cast steel ingots[J]. Steel Res. Int., 2017, 89: 1700037
[79] Wu M, Li J, Ludwig A, et al.Modeling diffusion-governed solidification of ternary alloys-Part 2: Macroscopic transport phenomena and macrosegregation[J]. Comput. Mater. Sci., 2014, 92: 267
[80] Wu M, Ludwig A, Kharicha A.A four phase model for the macrosegregation and shrinkage cavity during solidification of steel ingot[J]. Appl. Math. Modell., 2017, 41: 102
[81] Ge H H, Li J, Han X J, et al.Dendritic model for macrosegregation prediction of large scale castings[J]. J. Mater. Process. Technol., 2016, 227: 308
[82] Ge H H, Ren F L, Li J, et al.Modelling of ingot size effects on macrosegregation in steel castings[J]. J. Mater. Process. Technol., 2018, 252: 362
[83] Ge H H, Ren F L, Li J, et al.Four-phase dendritic model for the prediction of macrosegregation, shrinkage cavity, and porosity in a 55-ton ingot[J]. Metall. Mater. Trans., 2017, 48A: 1139
[84] Li J, Ge H H, Wu M H, et al.A columnar & non-globular equiaxed mixed three-phase model based on thermosolutal convection and grain movement[J]. Acta Metall. Sin., 2016, 52: 1096(李军, 葛鸿浩, Wu M H等. 基于热溶质对流及晶粒运动的柱状晶-非球状等轴晶混合三相模型[J]. 金属学报, 2016, 52: 1096)
[85] Kurz W, Giovanola B, Trivedi R.Theory of microstructural development during rapid solidification[J]. Acta Metall., 1986, 34: 823
[86] Li W S, Shen H F, Liu B C.Application of macro segregation mathematical models to large steel ingots[J]. Heavy Cast. Forg., 2012, (6): 38(李文胜, 沈厚发, 柳百成. 宏观偏析数学模型在大型钢锭中的应用[J]. 大型铸锻件, 2012, (6): 38)
[87] Ludwig A, Wu M H, Kharicha A.On macrosegregation[J]. Metall. Mater. Trans., 2015, 46A: 4854
[88] Li J, Wang J G, Ren F L, et al.Experimental and numerical simulation study on layer casting method for composition homogeneity on ingot casting[J]. Acta Metall. Sin., 2018, 54: 118(李军, 王军格, 任凤丽等. 基于成分均匀化的层状铸造方法的实验与模拟研究[J]. 金属学报, 2018, 54: 118)
[89] Ren F L, Wang J G, Ge H H, et al.A homogeneous billet layer casting fabrication method[J]. Metall. Mater. Trans., 2017, 48A: 4453
[1] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[2] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[3] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[4] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[5] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[6] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[7] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[8] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[9] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[10] Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. 金属学报, 2018, 54(3): 435-442.
[11] Jincheng WANG, Can GUO, Qi ZHANG, Sai TANG, Junjie LI, Zhijun WANG. Recent Progresses in Modeling of Nucleation During Solidification on the Atomic Scale[J]. 金属学报, 2018, 54(2): 204-216.
[12] Chuansong WU, Hao SU, Lei SHI. Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding[J]. 金属学报, 2018, 54(2): 265-277.
[13] Shiping WU, Rujia WANG, Wei CHEN, Guixin DAI. Progress on Numerical Simulation of Vibration in the Metal Solidification[J]. 金属学报, 2018, 54(2): 247-264.
[14] Houfa SHEN, Kangxin CHEN, Baicheng LIU. Numerical Simulation of Macrosegregation inSteel Ingot Casting[J]. 金属学报, 2018, 54(2): 151-160.
[15] Miaoyong ZHU, Wentao LOU, Weiling WANG. Research Progress of Numerical Simulation in Steelmaking and Continuous Casting Processes[J]. 金属学报, 2018, 54(2): 131-150.
No Suggested Reading articles found!