|
|
Research Progress in Bioresorbable Magnesium Scaffolds |
Tingfei XI1,2( ), Lina WEI1,3, Jing LIU2, Xiaoli LIU4, Zhen ZHEN1, Yufeng ZHENG5 |
1 Shenzhen Institute, Peking University, Shenzhen 518057, China 2 Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China 3 National Institute for Food and Drug Control, Beijing 100050, China 4 College of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China 5 Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China |
|
Cite this article:
Tingfei XI, Lina WEI, Jing LIU, Xiaoli LIU, Zhen ZHEN, Yufeng ZHENG. Research Progress in Bioresorbable Magnesium Scaffolds. Acta Metall Sin, 2017, 53(10): 1153-1167.
|
Abstract Because the bioresorbable scaffold (BRS) could overcome the difficulties caused by traditional nondegradable stents including chronic inflammation, late stent thrombosis, and long-term antiplatelet therapy, BRS is the research focus of interventional medical engineering. Because of both the high supporting strength and bioresorbable feature, the bioresorbable magnesium scaffold (BMS) is the research focus of BRS. In this paper, development process of Biotronik serial magnesium stents along with research progress of our domestic AZ31, JDBM and MgZnYNd stents is reviewed. According to the results of extensive in vitro and in vivo studies, BMS is safe and effective in vivo although its degradation rate is faster than our expectation. Through developing novel alloy system and improving stents' structure, the performance of BMS will be better and it will play more important role on the therapy of cardiovascular disease.
|
Received: 28 July 2017
|
|
Fund: Supported by Natural Science Foundation of Guangdong Province (Nos.2016A030310245 and 2016A030310244), China Postdoctoral Science Foundation (No.2016M591017) and Shenzhen Fundamental Research (No.JCYJ20160427170611414) |
[1] | Serruys P W, Ormiston J A, Onuma Y, et al.A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods[J]. Lancet, 2009, 373: 897 | [2] | Gogas B D, Serruys P W, Diletti R, et al.Vascular response of the segments adjacent to the proximal and distal edges of the ABSORB everolimus-eluting bioresorbable vascular scaffold: 6-month and 1-year follow-up assessment: A virtual histology intravascular ultrasound study from the first-in-man ABSORB cohort B trial[J]. JACC Cardiovasc. Interv., 2012, 5: 656 | [3] | Erbel R, Di Mario C, Bartunek J, et al.Three-year clinical data of the biosolve-I study with the paclitaxel-eluting bioabsorbable magnesium scaffold (Dreams) and multi-modality imaging analysis[J]. Circulation, 2013, 128(22S): 11264 | [4] | Haude M, Erbel R, Erne P, et al.Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial[J]. Lancet, 2013, 381: 836 | [5] | Haude M, Ince H, Abizaid A, et al.Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial[J]. Lancet, 2016, 387: 31 | [6] | Eberhart R C, Su S H, Nguyen K T, et al.Bioresorbable polymeric stents: Current status and future promise[J]. J Biomater. Sci. Polym. Ed., 2003, 14: 299 | [7] | Lincoff A M, Furst J G, Ellis S G, et al.Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model[J]. J. Am. Coll. Cardiol., 1997, 29: 808 | [8] | Waksman R.Update on bioabsorbable stents: From bench to clinical[J]. J. Interv. Cardiol., 2006, 19: 414 | [9] | Erne P, Schier M, Resink T J.The road to bioabsorbable stents: Reaching clinical reality?[J]. Cardiovasc. Inter. Rad., 2006, 29: 11 | [10] | Smith L F, Heagerty A M, Bing R F, et al.Intravenous infusion of magnesium-sulfate after acute myocardial-infarction: Effects on arrhythmias and mortality[J]. Int. J. Cardiol., 1986, 12: 175 | [11] | Christensen C W, Rieder M A, Silverstein E L, et al.Magnesium-sulfate reduces myocardial infarct size when administered before but not after coronary reperfusion in a canine model[J]. Circulation, 1995, 92: 2617 | [12] | Rukshin V, Azarbal B, Shah P K, et al.Intravenous magnesium in experimental stent thrombosis in swine[J]. Arterioscl. Throm. Vas., 2001, 21: 1544 | [13] | Heublein B, Rohde R, Kaese V, et al.Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology?[J]. Heart, 2003, 89: 651 | [14] | Campos C M, Muramatsu T, Iqbal J, et al.Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease[J]. Int. J. Mol. Sci., 2013, 14: 24492 | [15] | Di Mario C, Griffiths H, Goktekin O, et al.Drug-eluting bioabsorbable magnesium stent[J]. J. Interv. Cardiol., 2004, 17: 391 | [16] | Waksman R, Pakala R, Kuchulakanti P K, et al.Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries[J]. Catheter Cardiovasc. Interv., 2006, 68: 607 | [17] | Zartner P, Cesnjevar R, Singer H, et al.First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby[J]. Catheter Cardio. Interv., 2005, 66: 590 | [18] | Schranz D, Zartner P, Michel-Behnke I, et al.Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn[J]. Catheter Cardio. Int., 2006, 67: 671 | [19] | McMahon C J, Oslizlok P, Walsh K P. Early restenosis following biodegradable stent implantation in an aortopulmonary collateral of a patient with pulmonary atresia and hypoplastic pulmonary arteries[J]. Catheter Cardio. Int., 2007, 69: 735 | [20] | Peeters P, Bosiers M, Verbist J, et al.Preliminary results after application of absorbable metal stents in patients with critical limb ischemia[J]. J. Endovasc. Ther., 2005, 12: 1 | [21] | Bosiers M.AMS INSIGHT—absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis[J]. Cardiovasc. Interv. Radiol., 2009, 32: 424 | [22] | Waksman R, Erbel R, Di Mario C, et al.Early-and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries[J]. Jacc-Cardiovasc. Int., 2009, 2: 312 | [23] | Haude M, Erhel R, Erne P, et al.Three-year clinical data of the biosolve-I study with the paclitaxel-eluting bioabsorbable magnesium scaffold (Dreams) and multi-modality imaging analysis[J]. Circulation, 2013, 128(22S): 11264 | [24] | Haude M, Erbel R, Erne P, et al.TCT-38 two-year clinical data of cohort 1 and multi-modality imaging resuts up to 1-year follow-up of the BIOSOLVE-I study with the paclitaxel-eluting bioabsorbable magnesium scaffold (DREAMS)[J]. J. Am. Coll. Cardiol., 2012, 60: B11 | [25] | Haude M, Ince H, Abizaid A, et al.Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial[J]. Eur. Heart J., 2016, 37: 2701 | [26] | Tan L L, Wang Q, Geng F, et al.Preparation and characterization of Ca-P coating on AZ31 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: S648 | [27] | Lu Y J, Wan P, Zhang B C, et al.Research on the corrosion resistance and formation of double-layer calcium phosphate coating on AZ31 obtained at varied temperatures[J]. Mater. Sci. Eng., 2014, C43: 264 | [28] | Qiu X, Wan P, Tan L L, et al.Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition[J]. Mater. Sci. Eng., 2014, C36: 65 | [29] | Li H W, Xu K, Yang K, et al.The degradation performance of AZ31 bioabsorbable magnesium alloy stent implanted in the abdominal aorta of rabbits[J]. J. Interv. Radiol., 2010, 19: 315(李海伟, 徐克, 杨柯等. 可降解AZ31镁合金支架在兔腹主动脉的降解性能研究[J]. 介入放射学杂志, 2010, 19: 315) | [30] | Li J L, Zheng F, Qiu X, et al.Finite element analyses for optimization design of biodegradable magnesium alloy stent[J]. Mater. Sci. Eng., 2014, C42: 705 | [31] | Yuan G Y, Zhang X B, Niu J L, et al.Research progress of new type of degradable biomedical magnesium alloys JDBM[J]. Chin. J. Nonferrous Met., 2011, 21: 2476(袁广银, 章晓波, 牛佳林等. 新型可降解生物医用镁合金JDBM的研究进展[J]. 中国有色金属学报, 2011, 21: 2476) | [32] | Mao L, Shen L, Niu J L, et al.Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents[J]. Nanoscale, 2013, 5: 9517 | [33] | Mao L, Shen L, Chen J H, et al.A promising biodegradable magnesium alloy suitable for clinical vascular stent application[J]. Sci. Rep., 2017, 7: 46343 | [34] | Guan S K, Wang J, Wang L G, et al.The Mg-Zn-Y-Nd magnesium alloy for biodegradable vascular stents and its preparation method [P]. Chin Pat, 201110043303.8, 2011(关绍康, 王俊, 王利国等. 一种可生物降解血管支架用Mg-Zn-Y-Nd镁合金及其制备方法 [P]. 中国专利, 201110043303.8, 2011) | [35] | Xi T F, Liu J, Wang M, et al.One kind of surface coating which can reduce the degradation rate of biodegradable Magnesium alloy vascular stents and its preparation method [P]. Chin Pat, 201410200367.8, 2014(奚廷斐, 刘婧, 王敏等. 降低可全降解镁合金血管支架降解速率的表面涂层制备方法 [P]. 中国专利, 201410200367.8, 2014) | [36] | Liu J, Zheng B, Wang P, et al.Enhanced in vitro and in vivo performance of Mg-Zn-Y-Nd alloy achieved with APTES pretreatment for drug-eluting vascular stent application[J]. ACS Appl. Mater. Interfaces, 2016, 8: 17842 | [37] | Joner M, Finn A V, Farb A, et al.Pathology of drug-eluting stents in humans: Delayed healing and late thrombotic risk[J]. J. Am. Coll. Cardiol., 2006, 48: 193 | [38] | Virmani R, Guagliumi G, Farb A, et al.Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: Should we be cautious?[J]. Circulation, 2004, 109: 701 | [39] | Kotani J, Awata M, Nanto S, et al.Incomplete neointimal coverage of sirolimus-eluting stents: angioscopic findings[J]. J. Am. Coll. Cardiol., 2006, 47: 2108 | [40] | Liu J, Xi T F.Enhanced anti-corrosion ability and biocompatibility of PLGA coatings on MgZnYNd alloy by BTSE-APTES pre-treatment for cardiovascular stent[J]. J. Mater. Sci. Technol., 2016, 32: 845 | [41] | Liu J, Liu X L, Xi T F, et al.A novel pseudo-protein-based biodegradable coating for magnesium substrates: In vitro corrosion phenomena and cytocompatibility[J]. J. Mater. Chem., 2015, 3B: 878 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|