Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1323-1330    DOI: 10.11900/0412.1961.2017.00265
Orginal Article Current Issue | Archive | Adv Search |
A Review: Research on MR-Compatible Alloys in MRI
Yibin REN1(), Jun LI1,2, Qingchuan WANG1, Ke YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

Yibin REN, Jun LI, Qingchuan WANG, Ke YANG. A Review: Research on MR-Compatible Alloys in MRI. Acta Metall Sin, 2017, 53(10): 1323-1330.

Download:  HTML  PDF(3707KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnetic resonance imaging (MRI) is widely used in clinical applications. Metallic medical devices and implants used under MRI normally produce noticeable artifact which seriously affects image quality. Therefore, the artifact is an essential problem that should be solved for metallic biomaterials. Although artifact can be reduced by technical manipulation, it cannot be eliminated completely. This paper summarizes recent studies on MR-compatible alloys such as Zr alloys, Nb alloys and Cu alloys. Compared with normally clinical metallic materials, MR-compatible alloys described in this article can effectively reduce or eliminate artifacts under MRI. MR-compatibility will become an essential property to implant materials and devices. Thus developing metallic biomaterials with low magnetic susceptibility and excellent comprehensive performance becomes more important.

Key words:  magnetic resonance imaging      metallic artifact      MR-compatibility      Zr alloy      Cu alloy     
Received:  03 July 2017     
ZTFLH:  R318.08  
Fund: Supported by National Natural Science Foundation of China (No.31370976)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00265     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1323

Fig.1  Comparison of metal-related artifacts (left) and the mechanism that causes metal-related artifacts at magnetic resonance (MR) imaging (right) [8]
(a) relative positions of a titanium alloy screw (diameter, 4.5 mm) and two stainless steel screws (diameters, 3.5 and 4.5 mm) within the phantom
(b) axial MR images of the phantom (gradient-recalled echo sequence)
(c) axial MR images of the phantom (fast spin-echo sequence)
Material χv / 10-6 Material χv / 10-6
Bi -164 Al 20.7
Au -34 Zr 109
Ag -24 Ti 170
Zn -15.7 Ta 178
Cu -9.63 Ti6Al4V alloy 179[12]
Water (37 ℃) -9.05 Nb 237
α-Sn -23 NiTi alloy 245
Human tissue -11~-7 Pt 279
Si -4.2 Pd 806
β-Sn 2.4 L605 alloy 960[13]
Mg 11.7 Stainless steel 3520~6700
Table 1  Volume magnet susceptibilities of different metals and alloys[7,12,13]
Fig.2  Mass magnetic susceptibilities of cold-rolled Zr-14Nb (solid symbols) and Zr (open symbols) as a function of reduction ratio[17]
Fig.3  Effect of alloying element content on mass magnetic susceptibility of as-cast Zr-Ru[14], Zr-Nb[16] and Zr-Mo[18] alloys
Fig.4  Representative 2D MR images (upper) and 3D renderings (lower) of the Zr, Ag and Zr-Ag alloy [20]
Alloy Hardness σ0.2 / MPa σb / MPa δ / % E / GPa
Nb28Ta3.5W1.3Zr - 350 476 16.7 129
Nb-60Ta-2Zr 1705 MPa 332 432 20 142
ABI (Pd-Ag) 220 HV - - 30 110
Table 2  Mechanical properties of Nb28Ta3.5W1.3Zr[22], Nb60Ta2Zr[24] and ABI[27] alloys
Fig.5  Representative MR images taken under 3-T field strength and FSE acquisition for rabbit tissue containing an implanted [21]
(a) Nb-60Ta-2Zr and (c) L605 tubes of 10 mm in length, 3 mm in outer diameter and 0.5 mm in wall thickness, representing the most severe artifacts produced among respective sets of slices (b) and (d) are magnified images focused on blocked areas in Figs.5a and c, respectively
Fig.6  3D artifact renderings of ten different metals under same imaging conditions (static field B0=3.0 T fast spin echo, FSE) [33] (Noted: Cu with the least artifact compared with other metals; SUS means stainless steel)
Fig.7  Corresponding anteroposterior digital conventional angiogram obtained in the same pig with Cu alloy stents (arrows) in both renal arteries (With both MR angiographic techniques, the in-stent lumen is completely artifact free)[31]
Fig.8  Representative 2D MR images of FSE in 3 T magnetic field for pure Cu (a1), silicon brass (b1) and pure Ti (c1), with cylinder samples in the phantom perpendicular to B0; pure Cu (a2), silicon brass (b2) and pure Ti (c2), with cylinder samples in the phantom parallel to B0[32]
Fig.9  Representative 2D MR image of FSE in 3 T magnetic field for pure Zn (arrow), with cylinder sample in the phantom parallel to B0
[1] Wang W D.Research on magnetic resonance imaging guided bone biopsy robot and key technologies [D]. Xi'an: Northwestern Polytechnical University, 2014(王文东. 磁共振图像向导的骨活检手术机器人关键技术研究 [D]. 西安: 西北工业大学, 2014)
[2] Schenck J F.Safety of strong, static magnetic fields[J]. J. Magn. Reson. Imaging, 2000, 12: 2
[3] Tian J G, Liu M L, Xia Z F, et al.Safety factors of magnetic resonance imaging[J]. Chin. J. Magn. Reson., 2000, 17: 505(田建广, 刘买利, 夏照帆等. 磁共振成像的安全性[J]. 波谱学杂志, 2000, 17: 505)
[4] Liu Y, Long D, Qian X M.Safety factors of magnetic resonance imaging and cardiac metal implants[J]. Chin. J. Misdiagn., 2007, 7: 7234(刘瑜, 龙丹, 钱晓明. 磁共振成像的安全性与心脏金属移植物[J]. 中国误诊学杂志, 2007, 7: 7234)
[5] Luo M M.Research on the issues of fetal magnetic resonance safety [D]. Guangzhou: Southern Medical University, 2015(罗敏敏. 胎儿磁共振安全问题研究 [D]. 广州: 南方医科大学, 2015)
[6] Syed M A, Mohiaddin R H.Magnetic Resonance Imaging of Congenital Heart Disease[M]. London: Springer, 2012: 39
[7] Schenck J F.The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds[J]. Med. Phys., 1996, 23: 815
[8] Lee M J, Kim S, Lee S A, et al.Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT[J]. Radiographics, 2007, 27: 791
[9] Nitatori T, Hanaoka H, Hachiya J, et al.MRI artifacts of metallic stents derived from imaging sequencing and the ferromagnetic nature of materials[J]. Radiat. Med., 1999, 17: 329
[10] Bernstein M A, Huston J, Ward H A.Imaging artifacts at 3.0 T[J]. J. Magn. Reson. Imaging, 2006, 24: 735
[11] Bagheri M H, Hosseini M M, Emami M J, et al.Metallic artifact in MRI after removal of orthopedic implants[J]. Eur. J. Radiol., 2012, 81: 584
[12] Zhou F Y, Qiu K J, Li H F, et al.Screening on binary Zr-1X (X= Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility[J]. Acta Biomater., 2013, 9: 9578
[13] Zhou D B, Wang S P, Wang S G, et al.Bulk metallic glasses: MRI compatibility and its correlation with magnetic susceptibility[J]. J. Mater. Sci. Technol., 2016, 32: 496
[14] Zhou F Y.Microstructure and property of novel Zr-based alloys for biomedical application [D]. Harbin: Harbin Harbin Engeering University, 2014(周飞宇. 新型医用锆基合金的组织结构与性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2014)
[15] Salda?a L, Méndez-Vilas A, Jiang L, et al.In vitro biocompatibility of an ultrafine grained zirconium[J]. Biomaterials, 2007, 28: 4343
[16] Kondo R, Nomura N, Suyalatu, et al. Microstructure and mechanical properties of as-cast Zr-Nb alloys[J]. Acta Biomater., 2011, 7: 4278
[17] Kondo R, Shimizu R, Nomura N, et al.Effect of cold rolling on the magnetic susceptibility of Zr-14Nb alloy[J]. Acta Biomater., 2013, 9: 5795
[18] Suyalatu, Nomura N, Oya K, et al. Microstructure and magnetic susceptibility of as-cast Zr-Mo alloys[J]. Acta Biomater., 2010, 6: 1033
[19] Suyalatu, Kondo R, Tsutsumi Y, et al. Effects of phase constitution on magnetic susceptibility and mechanical properties of Zr-rich Zr-Mo alloys[J]. Acta Biomater., 2011, 7: 4259
[20] Imai H, Tanaka Y, Nomura N, et al.Magnetic susceptibility, artifact volume in MRI, and tensile properties of swaged Zr-Ag composites for biomedical applications[J]. J. Mech. Behav. Biomed. Mater., 2017, 66: 152
[21] Zhou D B, Wang S G, Wang S P, et al.MRI compatibility of several early transition metal based alloys and its influencing factors[J]. J. Biomed. Mater. Res. Part B, 2017, doi: 10.1002/jbm.b.33832
[22] O'Brien B, Stinson J, Carroll W. Development of a new niobium-based alloy for vascular stent applications[J]. J. Mech. Behav. Biomed. Mater., 2008, 1: 303
[23] O'Brien B J, Stinson J S, Boismier D A, et al. Characterization of an NbTaWZr alloy designed for magnetic resonance angiography compatible stents[J]. Biomaterials, 2008, 29: 4540
[24] Li H Z, Xu J.MRI compatible Nb-Ta-Zr alloys used for vascular stents: Optimization for mechanical properties[J]. J. Mech. Behav. Biomed. Mater., 2014, 32: 166
[25] Li H Z, Zhao X, Xu J.MRI-compatible Nb-60Ta-2Zr alloy for vascular stents: Electrochemical corrosion behavior in simulated plasma solution[J]. Mater. Sci. Eng., 2015, C56: 205
[26] Li X M, Li H Z, Wang S P, et al.MRI-compatible Nb-60Ta-2Zr alloy used for vascular stents: Haemocompatibility and its correlation with protein adsorption[J]. Mater. Sci. Eng., 2014, C42: 385
[27] van Dijk L C, van Holten J, van Dijk B P, et al. A precious metal alloy for construction of MR imaging-compatible balloon-expandable vascular stents[J]. Radiology, 2001, 219: 284
[28] Wataha J C, Shor K.Palladium alloys for biomedical devices[J]. Expert Rev. Med. Devices, 2010, 7: 489
[29] Liu Y B, Hu D Y, Xia L M, et al.Research about interventional magnetic resonance imaging[J]. Radiol. Pract., 2003, 18: 611(刘于宝, 胡道予, 夏黎明等. 介入性磁共振器械的研究[J]. 放射学实践, 2003, 18: 611)
[30] Liu P, Ren F Z, Jia S G.Copper Alloy and Its Application [M]. Beijing: Chemical Industry Press, 2007: 1(刘平, 任凤章, 贾淑果. 铜合金及其应用 [M]. 北京: 化学工业出版社, 2007: 1)
[31] Spuentrup E, Ruebben A, Stuber M, et al.Metallic renal artery MR imaging stent: Artifact-free lumen visualization with projection and standard renal MR angiography[J]. Radiology, 2003, 227: 897
[32] Li J, Ren Y B, Ibrahim M, et al.MR-compatible silicon brass for magnetic resonance guided biopsy application[J]. Mater. Lett., 2017, 202: 162
[33] Imai H, Tanaka Y, Nomura N, et al.Three-dimensional quantification of susceptibility artifacts from various metals in magnetic resonance images[J]. Acta Biomater., 2013, 9: 8433
[34] Buecker A, Spuentrup E, Ruebben A, et al.Artifact-free in-stent lumen visualization by standard magnetic resonance angiography using a new metallic magnetic resonance imaging stent[J]. Circulation, 2002, 105: 1772
[35] Spuentrup E, Ruebben A, Mahnken A, et al.Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a new, metallic, coronary magnetic resonance imaging stent[J]. Circulation, 2005, 111: 1019
[36] Astary G W, Peprah M K, Fisher C R, et al.MR measurement of alloy magnetic susceptibility: Towards developing tissue-susceptibility matched metals[J]. J. Magn. Reson., 2013, 233: 49
[37] Weiss C R, Nour S G, Lewin J S.MR-guided biopsy: A review of current techniques and applications[J]. J. Magn. Reson. Imaging, 2008, 27: 311
[38] Dogan B E, Le-Petross C H, Stafford J R, et al. MRI-guided vacuum-assisted breast biopsy performed at 3 T with a 9-gauge needle: preliminary experience[J]. Am. J. Roentgenol., 2012, 199: W651
[39] Shafiei F, Honda E, Takahashi H, et al.Artifacts from dental casting alloys in magnetic resonance imaging[J]. J. Dent. Res., 2003, 82: 602
[40] Taniyama T, Sohmura T, Etoh T, et al.Metal artifacts in MRI from non-magnetic dental alloy and its FEM analysis[J]. Dent. Mater. J., 2010, 29: 297
[41] Silvestri Z, Davis R S, Genevès G, et al.Volume magnetic susceptibility of gold-platinum alloys: Possible materials to make mass standards for the watt balance experiment[J]. Metrologia, 2003, 40: 172
[42] Uyama E, Inui S, Hamada K, et al.Magnetic susceptibility and hardness of Au-xPt-yNb alloys for biomedical applications[J]. Acta Biomater., 2013, 9: 8449
[43] Li Q Y, Zhang S.Nutritionist Handbook [M]. Beijing: People's Military Medical Press, 2009: 46(李清亚, 张松. 营养师手册 [M]. 北京: 人民军医出版社, 2009: 46)
[44] Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577
[45] Vojtěch D, Kubásek J, ?erák J, et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta Biomater., 2011, 7: 3515
[46] Ren Y B, Li J, Dong J H, et al.Magnetic compatibility zinc alloy and application thereof [P]. Chin. Pat., 20150542175.X, 2017(任伊宾, 李俊, 东家慧等. 一种磁兼容锌合金及其应用 [P]. 中国专利, 20150542175.X, 2017)
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[3] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[4] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[5] ZHU Xiaohui, LIU Xiangbing, WANG Runzhong, LI Yuanfei, LIU Wenqing. Effects of Ar Ion Irradiation on Microstructure of Fe-Cu Alloys at 290oC[J]. 金属学报, 2022, 58(7): 905-910.
[6] LIN Yan, SI Cheng, XU Jingyu, LIU Ze, ZHANG Cheng, LIU Lin. Heterogeneous Structure and Mechanical Properties of Strong and Tough Al Alloys Prepared by Selective Laser Melting[J]. 金属学报, 2022, 58(11): 1509-1518.
[7] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[8] YE Junjie, HE Zhirong, ZHANG Kungang, DU Yuqing. Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy[J]. 金属学报, 2021, 57(6): 717-724.
[9] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[10] Zhengyan ZHANG,Feng CHAI,Xiaobing LUO,Gang CHEN,Caifu YANG,Hang SU. The Strengthening Mechanism of Cu Bearing High Strength Steel As-Quenched and Tempered and Cu Precipitation Behavior in Steel[J]. 金属学报, 2019, 55(6): 783-791.
[11] Baojun ZHAO,Yuhong ZHAO,Yuanyang SUN,Wenkui YANG,Hua HOU. Effect of Mn Composition on the Nanometer Cu-Rich Phase of Fe-Cu-Mn Alloy by Phase Field Method[J]. 金属学报, 2019, 55(5): 593-600.
[12] ZHU Shang,LI Zhihui,YAN Lizhen,LI Xiwu,ZHANG Yongan,XIONG Baiqing. Effects of Zn Addition on the Natural Ageing Behavior and Bake Hardening Response of a Pre-Aged Al-Mg-Si-Cu Alloy[J]. 金属学报, 2019, 55(11): 1395-1406.
[13] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[14] Di FENG, Xinming ZHANG, Hongmei CHEN, Yunxue JIN, Guoying WANG. Effect of Non-Isothermal Retrogression and Re-Ageing on Microstructure and Properties of Al-8Zn-2Mg-2Cu Alloy Thick Plate[J]. 金属学报, 2018, 54(1): 100-108.
[15] Ye ZHOU,Pingli MAO,Zhi WANG,Zheng LIU,Feng WANG. Investigations on Hot Tearing Behavior of Mg-7Zn-xCu-0.6Zr Alloys[J]. 金属学报, 2017, 53(7): 851-860.
No Suggested Reading articles found!