Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (11): 1511-1520    DOI: 10.11900/0412.1961.2017.00178
Orginal Article Current Issue | Archive | Adv Search |
Effect of Al Film on the Electromagnetic Properties of Glass Fiber Reinforced Resin Matrix Composite
Yuqiu CHEN1,2, Yapei ZU1, Jun GONG1, Cao SUN1(), Chen WANG3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Altair Engineering Software (Shanghai) Co., Ltd., Shanghai 200436, China
Cite this article: 

Yuqiu CHEN, Yapei ZU, Jun GONG, Cao SUN, Chen WANG. Effect of Al Film on the Electromagnetic Properties of Glass Fiber Reinforced Resin Matrix Composite. Acta Metall Sin, 2017, 53(11): 1511-1520.

Download:  HTML  PDF(2167KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metallic thin films have many properties that bulk metals do not possess, such as high impedance. Recently, increasing attention has been paid to high impedance surface in the design of antennas and absorbers. Metallic thin films used in composite materials can realize the perfect matching of electromagnetic wave in different materials. The use of metallic thin films in electromagnetic functional materials results in significant increase of the absorbing intensity and operating bandwidth. But it usually needs to pay a huge amount of manpower, material resources and a longer period of time to design excellent electromagnetic functional materials with metallic films. So it is greatly significant to understand clearly the electromagnetic influence of metallic film for designing excellent performance materials and saving costs by simulation software. Al film is a typical non-magnetic metal film. In this work, the electromagnetic reflectivity of Al films and glass fiber reinforced resin matrix composite had been studied. High frequency electromagnetic field calculation software FEKO was employed to calculate the reflection coefficient of the composites. The effect of composites' real part of permittivity εr, dielectric loss tangent tanδε, permeability μr and magnetic loss tangent tanδμ on microwave reflectivity had been discussed. The equivalent electromagnetic parameters of glass fiber reinforced resin matrix composite had been obtained through a comparison between simulation and experimental results. Due to resonance phenomena of the embedded Al film in the glass fiber reinforced resin matrix composite with certain thickness, there is an optimum resistance value of Al film that makes the composite structure have minimum reflection. Through the calculation of Al film and glass fiber reinforced resin matrix composite with different structure, the thickness relationship between Al films in calculation and Al films prepared by magnetron sputtering had been obtained. According to the theory of transmission line, the resistance of resonance is analyzed by MATLAB. This method is also applicable to the resistance solution of the homogeneous metal films at any position in the composite or frequency selective surfaces. The equivalent electromagnetic parameters of Al film and glass fiber reinforced resin matrix composite in simulation had been ascertained, and the simulation results agree well with the experimental results.

Key words:  Al film      glass fiber reinforced resin matrix composite      effective electromagnetic parameter      simulation      resonance      resistance     
Received:  09 May 2017     
ZTFLH:  O484.5  
  TB43  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00178     OR     https://www.ams.org.cn/EN/Y2017/V53/I11/1511

Fig.1  Schematic of frequency selective surface unit
Fig.2  Simulation models of two kinds of composite structures (U, V, N represent the three vectors in workplane coordinate system, corresponding to X, Y, Z directions in the global coordinate system, respectively)
(a) metallic frequency selective surface and composite structure
(b) Al film and composite structure
Fiber εr tanδε
D glass fiber 4.0 0.002~0.003
Quartz fiber 3.8 0.0001~0.0002
Polyester resin 2.7~3.2 0.005~0.02
Epoxy resin 3.0~3.4 0.01~0.03
Glass fiber/epoxy 4.2~4.7 0.007~0.014
Glass fiber/polyimide 4.0~4.4 0.006~0.012
Table 1  Dielectric properties of fiber, resin and its composites at 20 ℃, 10 GHz[13]
Fig.3  εr and tanδε of the composite
Fig.4  SEM image of the composite section
Fig.5  Reflectivity curves of composites with different εr
Fig.6  Reflectivity curves of composites with different tanδε
Fig.7  Reflectivity curves of composites with different μr (μr—real part of magnetic permeability)
Fig.8  Reflectivity curves of composites with different tanδμ (tanδμ—magnetic loss tangent)
Fig.9  Reflectivity curves of calculated and test results of composites at the unit size of a=48 mm, c=7 mm (a) and a=40 mm, c=5 mm (b)
Fig.10  Curves of calculated and test reflectivities of 8 mm composite with an Al film in the cases of Al film being above the composite (a) and in the middle of the composite (b)
Fig.11  Simulation reflectivity curves of 8 mm composite with different Al films in thickness in the case of Al film being above the composite (a) and in the middle of the composite (b)
Fig.12  Metallic film and its corresponding dielectric composite structure (k—wave number in medium, d—dielectric layer thickness, Z0—wave impedance of air, Zd—wave impedance of dielectric, r—resistance)
(a) sketch of the structure
(b) transmission line equivalent circuit model of this structure
Fig.13  Resonant resistance (r) curve of 8 mm glass fiber reinforced plastic composite structure with Al film
[1] Zhou H, Qu S B, Peng W D, et al.A novel frequency selective surface loaded with resistance films absobers[J]. Acta Phys. Sin., 2012, 61: 104201(周航, 屈绍波, 彭卫东等. 一种加载电阻膜吸波材料的新型频率选择表面[J]. 物理学报, 2012, 61: 104201)
[2] Cheng Y Z, Nie Y, Gong R Z, et al.Design of an ultrathin and wideband metamaterial absorber based on resistance film and fractal frequency selective surface[J]. Acta Phys. Sin., 2013, 62: 044103(程用志, 聂彦, 龚荣洲等. 基于电阻膜与分形频率选择表面的超薄宽频带超材料吸波体的设计[J]. 物理学报, 2013, 62: 044103)
[3] Pang Y Q, Cheng H F, Zhou Y J, et al.Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates[J]. Opt. Express, 2012, 20: 12515
[4] Zhao D L, Song Y L, Zhu Y P.New microwave absorber based on resonant high-impedance surface[J]. J. Nanjing Univ. Sci. Technol.(Nat. Sci.), 2010, 34: 136(赵德林, 宋耀良, 朱艳萍. 一种新的基于谐振型高阻抗表面的微波吸波屏[J]. 南京理工大学学报(自然科学版), 2010, 34: 136)
[5] Costa F, Monorchio A.Electromagnetic absorbers based on high-impedance surfaces: From ultra-narrowband to ultra-wideband absorption[J]. Adv. Electromagnet., 2012, 1(3): 7
[6] Teng Z P.The study of electromagnetic band-gap structure used in antenna design [D]. Nanchang: East China Jiaotong University, 2016(腾兆朋. 电磁带隙结构研究与在天线设计中的应用 [D]. 南昌: 华东交通大学, 2016)
[7] Costa F, Genovesi S, Monorchio A.On the bandwidth of high-impedance frequency selective surfaces[J]. IEEE Antennas Wirel. Propag. Lett., 2010, 8: 1341
[8] Sun L K, Cheng H F, Zhou Y J, et al.Broadband metamaterial absorber based on coupling resistive frequency selective surface[J]. Opt. Express, 2012, 20: 4675
[9] Sun L K, Cheng H F, Zhou Y J, et al.Low-frequency and broad band metamaterial absorber: Design, fabrication, and characterization[J]. Appl. Phys., 2011, 105A: 49
[10] Chen J F, Hu Z Y, Wang G D, et al.High-impedance surface-based broadband absorbers with interference theory[J]. IEEE Trans. Antennas Propag., 2015, 63: 4367
[11] Gu C, Qu S B, Pei Z B, et al.Design of a wide-band metamaterial absorber based on resistance films[J]. Acta Phys. Sin., 2011, 60(8): 087802(顾超, 屈绍波, 裴志斌等. 基于电阻膜的宽频带超材料吸波体的设计[J]. 物理学报, 2011, 60(8): 087802)
[12] Yan Z W, Su D L, Yuan X M.FEKO 5.4 Electromagnetic Field Analysis Techniques and Examples [M]. Beijing: China Water Power Press, 2009: 1(阎照文, 苏东林, 袁晓梅. FEKO 5.4电磁场分析技术与实例详解 [M]. 北京: 中国水利水电出版社, 2009: 1)
[13] Xing L Y.Study on the microwave-absorbing composite with circuit analogue [D]. Beijing: Beihang University, 2003(邢丽英. 含电路模拟结构吸波复合材料研究 [D]. 北京: 北京航空航天大学, 2003)
[14] Zhou Y J, Chen Z H, Cheng H F, et al.Calculating microwave effective permittivity of particle-filling composite materials by FDTD method[J]. J. Mater. Sci. Eng., 2006, 24: 830(周永江, 陈朝辉, 程海峰等. 用FDTD方法研究颗粒型复合材料微波等效介电常数[J]. 材料科学与工程学报, 2006, 24: 830)
[15] Wang D, Deng J L, Jiao Y J.The evaluation for the theory calculation methods of composite medium absorbing material equivalent electromagnetic parameters[J]. Mater. Prot., 2014, 47(suppl.1): 46(王丹, 邓京兰, 焦亚军. 复合介质吸波材料等效电磁参数理论计算方法的评价[J]. 材料保护, 2014, 47(增刊1): 46)
[16] Wang T G, Gong J, Du H, et al.Study on electromagnetic wave transmission performances of ultra-thin metallic films[J]. Acta Metall. Sin., 2005, 41: 814(王铁钢, 宫骏, 杜昊等. 超薄金属膜电磁波传输性能的研究[J]. 金属学报, 2005, 41: 814)
[17] Liu J G, Wang T G, Du H, et al.Permittivity of nano aluminum films in microwave band[J]. Met. Funct. Mater., 2006, 13(1): 24(刘健钢, 王铁钢, 杜昊等. 纳米Al膜的微波介电特性研究[J]. 金属功能材料, 2006, 13(1): 24)
[18] Liu Z M, Du H, Shi N L, et al.Influence of conductivity size effect on the microwave absorption properties of aluminium films[J]. Acta Metall. Sin., 2008, 44: 1099(刘志敏, 杜昊, 石南林等. 铝膜电导率尺寸效应对其微波性能的影响[J]. 金属学报, 2008, 44: 1099)
[19] Du H, Xiao J Q, Tan M H, et al.Initial analysis of effective medium theory to dielectric function change of nanometal film[J]. Acta Metall. Sin., 2000, 36: 1165(杜昊, 肖金泉, 谭明晖等. 利用有效媒质理论对纳米金属薄膜介电函数的初步分析[J]. 金属学报, 2000, 36: 1165)
[20] Du H, Bai X D, Xiao J Q, et al.Size effect of the absorptance of the ultra-thin titanium films[J]. Chin. J. Mater. Res., 2001, 15: 215(杜昊, 白雪冬, 肖金泉等. 超薄Ti膜吸收率的尺寸效应[J]. 材料研究学报, 2001, 15: 215)
[21] Bai X D, Huang R F, Wen L S.The size effect of the visible absorptance of the ultrathin aluminum film[J]. Acta Metall. Sin., 1998, 34: 1005(白雪冬, 黄荣芳, 闻立时. 超薄Al膜可见光吸收率的尺寸效应[J]. 金属学报, 1998, 34: 1005)
[22] Bai X D, Huang R F, Wen L S.The size effect of the visible optical characteristics for ultrathin Al films[J]. Vac. Sci. Technol.(China), 1999, 19(2): 108(白雪冬, 黄荣芳, 闻立时. 超薄Al膜可见光光学特性与其特征尺寸的关系[J]. 真空科学与技术, 1999, 19(2): 108)
[23] Tang W, Deng L J, Xu K W, et al., Relationship between resistivity of metallic film and its surface roughness, residual stress[J]. Rare Met. Mater. Eng., 2008, 37: 617(唐武, 邓龙江, 徐可为等. 金属薄膜电阻率与表面粗糙度、残余应力的关系[J]. 稀有金属材料与工程, 2008, 37: 617)
[24] Zhang H B.Design of broadband periodic absorbing structure based on electromagnetic resonances [D]. Chengdu: University of Electronic Science and Technology of China, 2013(张辉彬. 基于电磁谐振的宽频周期吸波结构设计 [D]. 成都: 电子科技大学, 2013)
[25] Xu Y Q, Zhang H B, Zhou P H, et al.Design of a low-frequency broadband circuit analog absorbers based on wire media[J]. Acta Phys. Sin., 2013, 62: 058103(徐阳秋, 张辉彬, 周佩珩等. 基于金属线阵列嵌入的低频宽带电路模拟吸波体设计[J]. 物理学报, 2013, 62: 058103)
[26] Zhang H B, Zhou P H, Lu H P, et al.Resistance selection of high impedance surface absorbers for perfect and broadband absorption[J]. IEEE Trans. Antennas Propag., 2013, 61: 976
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[5] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[6] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[7] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[8] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[11] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[12] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[13] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[14] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[15] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
No Suggested Reading articles found!