|
|
Effects of Cu on Microstructure and Mechanical Properties of AlN/TiN-Cu Nanocomposite Multilayers |
Jin LIU1,Yuanxia LAO1,Yuan WANG1,2( ) |
1 Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China 2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
Jin LIU,Yuanxia LAO,Yuan WANG. Effects of Cu on Microstructure and Mechanical Properties of AlN/TiN-Cu Nanocomposite Multilayers. Acta Metall Sin, 2017, 53(4): 465-471.
|
|
Abstract The nanocomposite multilayers, composed by typical nitride ceramic (AlN and TiN), have been developed for variety of application for its excellent properties such as structure stability and high hardness as well as low friction coefficient. By adding an appropriate amount of soft metal, the mechanical performance of the film can be significantly improved including intensity, tenacity and friction coefficient, but microstructure and hardness will be greatly influenced. In this work, AlN/TiN-Cu nanocomposite multilayers combining AlN with composite layer formed by adding soft phase metal Cu into hard TiN phase were prepared by multi-arc ion plating equipment. The microstructure and phase composition of the films were characterized by FESEM, HRTEM and XRD respectively. The hardness and the bond strength of the films were detected by Vickers hardness test and scratch method. The effects of Cu on microstructure and mechanical properties of AlN/TiN-Cu nanocomposite multilayers were investigated. The results show that the microstructure of the films was affected by the doping of Cu. The average grain size of the films reduced with the increase of Cu content. The hardness of films increased after the dropping of Cu. However, the critical loads of the films with different types have different changing trends. The critical load of the nanocomposite monolayers increased while that of the nanocomposite multilayers decreased.
|
Received: 27 June 2016
|
Fund: Supported by National Natural Science Foundation of China (Nos.51171124 and 11505121), International Science and Technology Cooperation Program of China (No.2014DFR50710) and Scientific and Technical Supporting Programs Funded by the Science and Technology Department of Sichuan Province (No.2014GZ0004) and Research Program of the Key Laboratory of Nuclear Materials and Safety Assessment Chinese Academy of Sciences (No.2017NMSAKF02) |
[1] | Zhang H P, Tang W M, Chang Z, et al.Research status and application of superhard tool material[J]. Aeronaut. Manuf. Technol., 2015, (6): 47 | [1] | (张慧萍, 唐文明, 常震等. 超硬刀具材料的研究现状及应用[J]. 航空制造技术, 2015, (6): 47) | [2] | Zhang E G, Zhu Z, Zhang T B.Research progress and application of superhard nano-micron PVD coating technology in the cutting manufacturing area[J]. Surf. Technol., 2015, 44(4): 89 | [2] | (张而耕, 朱州, 张体波. 超硬纳微米PVD涂层技术在刀具领域的应用及研究进展[J]. 表面技术, 2015, 44(4): 89) | [3] | Wang J T, Liu P, Li W, et al.Research progress of TiAlN hard coating[J]. Hot Work. Technol., 2010, 39(20): 104 | [3] | (王均涛, 刘平, 李伟等. TiAlN硬质涂层的研究进展 [J]. 热加工工艺, 2010, 39(20): 104) | [4] | Musil J.Hard and superhard nanocomposite coatings[J]. Surf. Coat. Technol., 2000, 125: 322 | [5] | Ran C H, Jin Y D, Zhu W, et al.Study status on the impact of stress on structure and properties of films[J]. Mater. Rev., 2013, 27(5): 139 | [5] | (冉春华, 金义栋, 祝闻等. 应力对薄膜结构与性能影响的研究现状[J]. 材料导报, 2013, 27(5): 139) | [6] | Chen K Y, Bielawski M.Interfacial fracture toughness of transition metal nitrides[J]. Surf. Coat. Technol., 2008, 203: 598 | [7] | Musil J, Vl?ek J.Magnetron sputtering of films with controlled texture and grain size[J]. Mater. Chem. Phys., 1998, 54: 116 | [8] | He J L, Setsuhara Y, Shimizu I, et al.Structure refinement and hardness enhancement of titanium nitride films by addition of copper[J]. Surf. Coat. Technol., 2001, 137: 38 | [9] | Olivera J C, Manaia A, Cavaleiro A.Hard amorphous Ti-Al-N coatings deposited by sputtering[J]. Thin Solid Films, 2008, 516: 5032 | [10] | Zhao Y H, Wang X Q, Xiao J Q, et al.Ti-Cu-N hard nanocompo-site films prepared by pulse biased arc ion plating[J]. Appl. Surf. Sci., 2011, 258: 370 | [11] | Zhang L, Ma G J, Lin G Q, et al.Synthesis of Cu doped TiN composite films deposited by pulsed bias arc ion plating[J]. Nucl. Instrum. Methods Phys. Res., 2014, 320B: 17 | [12] | Myung H S, Lee H M, Shaginyan L R, et al. Microstructure and mechanical properties of Cu doped TiN superhard nanocomposite coatings [J]. Surf. Coat. Technol., 2003, 163-164: 591 | [13] | Koehler J S.Attempt to design a strong solid[J]. Phys. Rev., 1970, 2B: 547 | [14] | Yang W M C, Tsakalakos T, Hilliard J E. Enhanced elastic modulus in composition-modulated gold-nickel and copper-palladium foils[J]. J. Appl. Phys., 1977, 48: 876 | [15] | Wong M S, Hsiao G Y, Yang S Y.Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings [J]. Surf. Coat. Technol., 2000, 133-134: 160 | [16] | Madan A, Kim I W, Cheng S C, et al.Stabilization of cubic AlN in epitaxial AlN/TiN superlattices[J]. Phys. Rev. Lett., 1997, 78: 1743 | [17] | Wei Y Q, Li C W, Gong C Z, et al.Microstructure and mechanical properties of TiN/TiAlN multilayer coatings deposited by arc ion plating with separate targets[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1068 | [18] | Kawata K, Sugimura H, Takai O.Characterization of multilayer films of Ti-Al-O-C-N system prepared by pulsed d.c. plasma-enhanced chemical vapor deposition[J]. Thin Solid Films, 2001, 390: 64 | [19] | Leu M S, Lo S C, Wu J B, et al.Microstructure and physical pro-perties of arc ion plated TiAlN/Cu thin film[J]. Surf. Coat. Technol., 2006, 201: 3982 | [20] | Wei L, Mei F H, Shao N, et al.Study on the growth and superhardness of TiN/SiO2 nanomultilayers[J]. Acta Phys. Sin., 2005, 54: 1742 | [20] | (魏仑, 梅芳华, 邵楠等. TiN/SiO2纳米多层膜的晶体生长与超硬效应[J]. 物理学报, 2005, 54: 1742) | [21] | Shi J, Kumar A, Zhang L, et al.Effect of Cu addition on properties of Ti-Al-Si-N nanocomposite films deposited by cathodic vacuum arc ion plating[J]. Surf. Coat. Technol., 2012, 206: 2947 | [22] | H?rling A, Hultman L, Odén M, et al.Thermal stability of arc evaporated high aluminum-content Ti1-xAlxN thin films[J]. J. Vac. Sci. Technol., 2002, 20A: 1815 | [23] | PalDey S, Deevi S C. Single layer and multilayer wear resistant coatings of (Ti, Al) N: A review[J]. Mater. Sci. Eng., 2003, A342: 58 | [24] | Jin L.Study on the preparation and properties of Ti1-xAlxN films deposited by the multi-arc techniques [D]. Wuhan: Wuhan University of Science and Technology, 2006 | [24] | (金犁. 多弧离子镀制备Ti1-xAlxN薄膜的工艺及其性能研究 [D]. 武汉: 武汉科技大学, 2006) | [25] | Wang X C, Zhang X Y.Modern Materials Analysis and Testing Technology [M]. Beijing: National Defense Industry Press, 2010: 82 | [25] | (王晓春, 张希艳. 材料现代分析与测试技术 [M]. 北京: 国防工业出版社, 2010: 82) | [26] | Zou Z X, Xiang J Z, Xu S Y.Theoretical derivation of Hall-Petch relationship and discussion of its applicable range[J]. Phys. Exam. Test., 2012, 30(6): 13 | [26] | (邹章雄, 项金钟, 许思勇. Hall-Petch关系的理论推导及其适用范围讨论[J]. 物理测试, 2012, 30(6): 13) | [27] | Carvalho N J M, Zoestbergen E, Kooi B J, et al. Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti, Al)N coatings[J]. Thin Solid Films, 2003, 429: 179 | [28] | Jiang F Q.Adhesion measurement of titanium nitride coatings using the scratch test [D]. Chengdu: Southwest Jiaotong University, 2012 | [28] | (江范清. 划痕法评价氮化钛薄膜结合力研究 [D]. 成都: 西南交通大学, 2012) | [29] | Hultman L, Engstr?m C, Birch J, et al.Review of the thermal and mechanical stability of TiN-based thin films[J]. Z. Metallkd., 1999, 90: 803 | [30] | Mendibide C, Fontaine J, Steyer P, et al.Dry sliding wear model of nanometer scale multilayered TiN/CrN PVD hard coatings[J]. Tribol. Lett., 2004, 17: 779 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|