Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (11): 1367-1378    DOI: 10.11900/0412.1961.2019.00051
Current Issue | Archive | Adv Search |
Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe
SHAO Yi ,LI Yanmo ,LIU Chenxi (),YAN Zesheng ,LIU Yongchang
State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300354, China
Download:  HTML  PDF(35775KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the development of economy and technology, the application of ferritic stainless steel is becoming increasingly wider. 12Cr ferritic stainless steel has low carbon equivalent and good weldability, and it can not only be applied to a variety of conditions, but also reduce the production cost. High frequency longitudinal resistance welding is an advanced welding technology with high quality and efficiency. In this work, low-carbon ferritic stainless steel pipe has been joined successfully by high frequency longitudinal resistance welding. Microstructure characteristics and mechanical properties of the stainless steel pipe joint after annealing at different temperatures for 3 min were investigated by OM, SEM, TEM and mechanical testing. In the process of high frequency longitudinal resistance welding, the weld zone was heated quickly to a high austenization temperature which led to a coarse grain structure in this zone assisted by high pressure. The weld zone presented martenite and ferrite microstructure with irregular grain. As a result, the hardness of the weld zone reached 315 HV and the impact energy dropped to near zero. After annealing at 950 ℃ for 3 min, the decomposition of martensite was the main reason of the decrease of hardness (260 HV) in weld zone. The microstructure of weld zone was composed of ferrite and bainite, resulting in the increase of impact energy from 0 to 23 J.

Key words:  ferritic stainless steel      high frequency resistance welding      annealing      impact toughness      Vickers hardness     
Received:  26 February 2019     
ZTFLH:  TG132.33,TG113.25  
Fund: National Natural Science Foundation of China(U1660201)
Corresponding Authors:  Chenxi LIU     E-mail:  cxliu@tju.edu.cn

Cite this article: 

SHAO Yi , LI Yanmo , LIU Chenxi , YAN Zesheng , LIU Yongchang . Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe. Acta Metall Sin, 2019, 55(11): 1367-1378.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00051     OR     https://www.ams.org.cn/EN/Y2019/V55/I11/1367

Fig.1  Calculation of phase diagram (a) and DSC curves (b) of the low-carbon ferritic stainless steel
Fig.2  OM image of welded joint (HAZ—heat affected zone)
Fig.3  XRD spectra of weld zone after annealing at different temperatures
Fig.4  OM images of microstructure of welded joint(a) weld zone (b) HAZ 1 (c) HAZ 2 (d) base metal
Fig.5  OM images of microstructures in weld zone after annealing at different temperatures for 3 min(a) 650 ℃ (b) 750 ℃ (c) 850 ℃ (d) 950 ℃
Fig.6  TEM (a), EDS (b), HRTEM (c) images and SAED pattern (d) of precipitated phase in as-annealed weld zone (d-interplanar spacing)
Fig.7  TEM images of precipitated phase in weld zone after annealing at different temperatures for 3 min(a) 650 ℃ (b) 750 ℃ (c) 850 ℃ (d) 950 ℃
Fig.8  OM images of microstructures in HAZ 1 after annealing at different temperatures for 3 min(a) 650 ℃ (b) 750 ℃ (c) 850 ℃ (d) 950 ℃
Fig.9  OM images of microstructures in HAZ 2 after annealing at different temperatures for 3 min(a) 650 ℃ (b) 750 ℃ (c) 850 ℃ (d) 950 ℃
Fig.10  OM images of microstructures in base metal after annealing at different temperatures for 3 min(a) 650 ℃ (b) 750 ℃ (c) 850 ℃ (d) 950 ℃
Fig.11  Microhardness distribution from weld zone to base metal after annealing at different temperatures for 3 min
Fig.12  The tensile strength and elongation of welded joint after annealing at different temperatures for 3 min
Fig.13  SEM images of tensile fracture surfaces of welded joint after annealing at different temperatures for 3 min(a) 650 ℃ (b) 750 ℃ (c) 850 ℃ (d) 950 ℃
Fig.14  Charpy impact energy of welded joint after annealing at different temperatures for 3 min
Fig.15  SEM images of impact fracture surfaces of welded joint after annealing at different temperatures for 3 min(a) 650 ℃ (b) 750 ℃ (c) 850 ℃ (d) 950 ℃
[1] DingM, LiuS S, HaoH, et al. Strength and infrared assessment of spot-welded sheets on ferrite steel [J]. Mater. Des., 2013, 52: 353
[2] ShaoY, LiuC X, YueT X, et al. Effects of static recrystallization and precipitation on mechanical properties of 00Cr12 ferritic stainless steel [J]. Metall. Mater. Trans., 2018, 49B: 1560
[3] ZhangZ H. Study on microstructure and properties of heat affected zone of T4003 ferritic stainless steel [D]. Taiyuan: Taiyuan University of Technology, 2015
[3] 张昭晗. T4003铁素体不锈钢焊接热影响区组织及性能研究 [D]. 太原: 太原理工大学, 2015
[4] ChenM D, ZhangF, LiuZ Y, et al. Galvanic series of metals and effect of alloy compositions on corrosion resistance in Sanya seawater [J]. Acta Metall. Sin., 2018, 54: 1311
[4] 陈闽东, 张 帆, 刘智勇等. 金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响 [J]. 金属学报, 2018, 54: 1311
[5] LiX F. Properties optimization of 00Cr12Ti automobile steel [J]. Iron Steel, 2004, 39(7): 54
[5] 李学锋. 汽车用00Cr12Ti钢的性能优化 [J]. 钢铁, 2004, 39(7): 54
[6] KhorramiM S, MostafaeiM A, PouraliakbarH, et al. Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints [J]. Mater. Sci. Eng., 2014, A608: 35
[7] AmudaM O H, MridhaS. Grain refinement in ferritic stainless steel welds: The journey so far [J]. Adv. Mater. Res., 2010, 83-86: 1165
[8] ZhangZ Z, WuC S. Monte Carlo simulation of grain growth in heat-affected zone of 12 wt.% Cr ferritic stainless steel hybrid welds [J]. Comput. Mater. Sci., 2012, 65: 442
[9] ZhengH B, YeX M, JiangL Z, et al. Study on microstructure of low carbon 12% chromium stainless steel in high temperature heat-affected zone [J]. Mater. Des., 2010, 31: 4836
[10] Van WarmeloM, NolanD, NorrishJ. Mitigation of sensitisation effects in unstabilised 12%Cr ferritic stainless steel welds [J]. Mater. Sci. Eng., 2007, A464: 157
[11] ZhengH, YeX N, LiJ D, et al. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr-Ni stainless steel [J]. Mater. Sci. Eng., 2010, A527: 7407
[12] ZhengH B, YeX N, ZhangX F, et al. Microstructure transformation, grain growth and precipitated phase of 12% Cr ferritic stainless steel in coarse grain zone [J]. Trans. China Weld. Inst., 2011, 32(6): 37
[12] 郑淮北, 叶晓宁, 张雪峰等. 12%Cr铁素体不锈钢粗晶区组织转变和晶粒长大及析出相分析 [J]. 焊接学报, 2011, 32(6): 37
[13] WangL X, SongC J, SunF M, et al. Microstructure and mechanical properties of 12 wt.% Cr ferritic stainless steel with Ti and Nb dual stabilization [J]. Mater. Des., 2009, 30: 49
[14] YangR C, HuT L, MengW, et al. Performance analysis of welded joint on 00Cr12Ti stainless steel [J]. J. Lanzhou Univ. Technol., 2010, 36(4): 13
[14] 杨瑞成, 胡天雷, 孟 威等. 00Cr12Ti不锈钢焊接接头性能分析 [J]. 兰州理工大学学报, 2010, 36(4): 13
[15] ZhangZ H, WangZ B, WangW X, et al. Microstructure evolution in heat affected zone of T4003 ferritic stainless steel [J]. Mater. Des., 2015, 68: 114
[16] TabanE, KalucE, DhoogeA. Hybrid (plasma+gas tungsten arc) weldability of modified 12%Cr ferritic stainless steel [J]. Mater. Des., 2009, 30: 4236
[17] TabanE, DeleuE, DhoogeA, et al. Laser welding of modified 12%Cr stainless steel: Strength, fatigue, toughness, microstructure and corrosion properties [J]. Mater. Des., 2009, 30: 1193
[18] WangR. Effects of microstructure and heat-treatment on grooving corrosion of electric resistance welded pipes [J]. Acta Metall. Sin., 2002, 38: 1281
[18] 王 荣. 显微组织和热处理对直缝电阻焊管沟槽腐蚀的影响 [J]. 金属学报, 2002, 38: 1281
[19] HuL, WangX, YinX H, et al. Influence of inter-pass temperature on residual stress in multi-layer and multi-pass butt-welded 9%Cr heat-resistant steel pipes [J]. Acta Metall. Sin., 2018, 54: 1767
[19] 胡 磊, 王 学, 尹孝辉等. 层间温度对9%Cr热强钢管道多层多道焊接头残余应力的影响 [J]. 金属学报, 2018, 54: 1767
[20] AmudaM O H, MridhaS. Grain refinement and hardness distribution in cryogenically cooled ferritic stainless steel welds [J]. Mater. Des., 2013, 47: 365
[21] FuH, MinJ W, ZhaoH S, et al. Improved mechanical properties of aluminum modified ultra-pure 429 ferritic stainless steels after welding [J]. Mater. Sci. Eng., 2019, A749: 210
[22] ChenY Y, ChenQ. Three steps of quality control in the process of high-frequency welded pipe [J]. Weld. Pipe Tube, 2003, 26(2): 53
[22] 陈鹰杨, 陈 勤. 高频焊管生产过程质量控制的三个环节 [J]. 焊管, 2003, 26(2): 53
[23] LoK H, ShekC H, LaiJ K L. Recent developments in stainless steels [J]. Mater. Sci. Eng., 2009, R65: 39
[24] ZhangZ, ZhouY M, BaiY F, et al. Loop structure of HFW intermediate frequency heating treatment effect to heating [J]. Weld. Pipe Tube, 2009, 32(1): 41(张 喆, 周月明, 白云峰等. HFW中频热处理线圈结构对加热效果的影响 [J]. 焊管, 2009, 32(1): 41
[25] ZuoL L, HouX Q. Study on improving the low temperature Charpy impact toughness of HFW weld [J]. Weld. Pipe Tube, 2014, 37(1): 58
[25] 左兰兰, 侯学勤. 提高HFW焊缝低温夏比冲击韧性的研究 [J]. 焊管, 2014, 37(1): 58
[26] YanP, Güng?rO, ThibauxP, et al. Tackling the toughness of steel pipes produced by high frequency induction welding and heat-treatment [J]. Mater. Sci. Eng., 2011, A528: 8792
[27] WuY T, LiuY C, LiC, et al. Coarsening behavior of γ' precipitates in the γ'+γ area of a Ni3Al-based alloy [J]. J. Alloys Compd., 2019, 771: 526
[28] QiaoZ X, LiuY C, YuL M, et al. Formation mechanism of granular bainite in a 30CrNi3MoV steel [J]. J. Alloys Compd., 2009, 475: 560
[1] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[2] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[3] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[4] Wentao LI,Zhenyu WANG,Dong ZHANG,Jianguo PAN,Peiling KE,Aiying WANG. Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing[J]. 金属学报, 2019, 55(5): 647-656.
[5] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[6] Hanchen FENG,Xuegang MIN,Dasheng WEI,Lichu ZHOU,Shiyun CUI,Feng FANG. Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires[J]. 金属学报, 2019, 55(5): 585-592.
[7] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[8] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[9] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[10] Xiaoli ZHAO, Yongjian ZHANG, Chengwei SHAO, Weijun HUI, Han DONG. Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel[J]. 金属学报, 2018, 54(7): 1031-1041.
[11] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[12] Lin GENG, Hao WU, Xiping CUI, Guohua FAN. Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils[J]. 金属学报, 2018, 54(11): 1625-1636.
[13] Yizhe MAO, Jianguo LI, Lei FENG. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression[J]. 金属学报, 2018, 54(10): 1451-1460.
[14] Yubin DU, Xiaofeng HU, Haichang JIANG, Desheng YAN, Lijian RONG. Effect of Tempering Time on Carbide Evolution and Mechanical Properties in a Fe-Cr-Ni-Mo High-Strength Steel[J]. 金属学报, 2018, 54(1): 11-20.
[15] Min LI, Jing LIU, Qingwei JIANG. Effect of Annealing Temperature on Tensile Fracture Behavior of ARB-Cu at Room Temperature[J]. 金属学报, 2017, 53(8): 1001-1010.
No Suggested Reading articles found!