Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (1): 38-46    DOI: 10.11900/0412.1961.2016.00123
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Resistance of Ti-Fe Binary Alloys Fabricated by Powder Metallurgy
Wei XU1,Xin LU1(),Yanxia DU1,Qingyu MENG2,Ming LI1,Xuanhui QU1
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Wei XU,Xin LU,Yanxia DU,Qingyu MENG,Ming LI,Xuanhui QU. Corrosion Resistance of Ti-Fe Binary Alloys Fabricated by Powder Metallurgy. Acta Metall Sin, 2017, 53(1): 38-46.

Download:  HTML  PDF(2109KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium and its alloys have been widely used in the biomedical field, and have a great potential in making orthopedic implants due to their high specific strength, low elastic modulus, excellent biocompatibility and corrosion resistance in the human body environment. However, important titanium alloys currently used including extra low interstitial (ELI) Ti-6Al-4V (hereafter all in mass fraction, %), Ti-5Al-2.5Fe and Ti-6Al-7Nb are all at risk of releasing toxic Al and V ions in vivo. In addition, the elastic modulus (about 110 GPa) of these alloys are still much higher than those of cortical bones (about 20 GPa), which may bring severe ‘stress shielding’ for implantation failures. In order to solve these problems, much effort has been made to develop Al- and V-free lower-modulus β-Ti alloys. Considering that Fe is one of most effective and low-cost β-phase stabilizing element in titanium, binary Ti-Fe alloys have been selected and an assessment of the potential for biomedical applications has been conducted from the perspectives of their manufacturability, mechanical properties and biocorrosion performance. In this study, Ti-xFe (2%≤x≤20%) alloys were fabricated by powder metallurgy, and their microstructure and compression properties were characterized. In particular, the corrosion properties in four different simulated physiological electrolytes at (37±0.5) ℃ were investigated according to ASTM 59-97, compared with the performances of two commonly used titanium-based materials Ti-6Al-4V and commercially pure (CP) titanium. The results show that the content of β phase gradually increases with Fe content increasing. When Fe content goes up to 20%, the alloy samples are only composed of single β-phase grains. The PM-fabricated Ti-(2~20)Fe alloy is provided with a superior combination of mechanical properties, with the compressive strength range of 2096.2~2702.3 MPa, the compression ratio of 20.6%~33.2% and the elasticity modulus of 62.7~85.5 GPa. Higher Fe content tends to lead to the higher strength and ductility, but lower elastic modulus. In comparison, Ti-15Fe sintered at 1150 ℃ exhibits the superior mechanical properties, including the elastic modulus of 64.6 GPa, the compressive strength of 2702 MPa, and the compression rate of 32.7%. With the rise of Fe content in 2%~15%, the corrosion potential of alloys moves to a positive position, and the corrosion current density decreases, corresponding to the increase in the polarization resistance, which suggests the improvement of their corrosion properties. The binary alloy with 20%Fe possesses the similar corrosion performance to that of Ti-15Fe. The corrosion rates of Ti-15Fe alloy in simulated oral solution (FAS), phosphate buffer solution (PBS), simulated body fluid solution (SBF) and 0.9%NaCl solution (SS) are 1.7×10-3, 7.1×10-4, 1.2×10-3 and 3.5×10-4 mm/y, respectively. Compared with CP Ti and Ti-6Al-4V, Ti-15Fe alloy exhibits a more positive corrosion potential, smaller corrosion current density and higher polarization resistance, indicating a superior corrosion resistance.

Key words:  Ti-Fe binary alloy      powder metallurgy      corrosion resistance      biomedical      corrosion rate     
Received:  07 April 2016     
Fund: Supported by Beijing Natural Science Foundation (No.2163053) and State Key Lab of Advanced Metals and Materials, USTB (No.2012Z-10)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00123     OR     https://www.ams.org.cn/EN/Y2017/V53/I1/38

Fig.1  XRD spectra of Ti-(2~20)Fe binary alloys
Fig.2  SEM images of Ti-(2~20)Fe binary alloys(a) Ti-2Fe (b) Ti-5Fe (c) Ti-10Fe (d) Ti-15Fe (e) Ti-20Fe
Fig.3  Mechanical properties of Ti-(2~20)Fe binary alloys(a) compressive strength and compression rate(b) elastic modulus
Alloy FAS PBS SBF SS
Ti-2Fe -361.1±10.8 -405.9±11.6 -420.2±9.8 -302.5±11.1
Ti-5Fe -348.1±11.3 -367.4±9.7 -397.1±9.5 -284.5±10.3
Ti-10Fe -306.4±8.9 -340.1±10.4 -333.5±10.7 -280.3±8.6
Ti-15Fe -286.9±8.2 -280.2±8.8 -168.4±11.6 -43.77±9.4
Ti-20Fe -290.8±10.5 -304.9±8.6 -188.6±10.1 -77.04±10.2
Table 1  Corrosion potential of Ti-(2~20)Fe binary alloys in different electrolytes
Fig.4  Polarization curves of Ti-(2~20)Fe binaryalloys in different electrolytes

(a) FAS (b) PBS (c) SBF (d) SS

Fig.5  Current densities (a) and corrosion rates (b) of Ti-(2~20)Fe binary alloys in different electrolytes
Alloy FAS PBS SBF SS
βa βc Rp βa βc Rp βa βc Rp βa βc Rp
Ωcm-2 Ωcm-2 Ωcm-2 Ωcm-2
Ti-2Fe 293.9±10.8 116.5±5.7 80.6±3.2 470.8±12.3 121.1±10.4 261.7±16.3 351.8±19.5 92.1±9.5 83.5±6.9 477.4±21.5 154.9±5.6 508.5±22.9
Ti-5Fe 305.3±16.5 125.7±9.9 99.3±5.7 323.4±10.8 125.3±7.5 280.5±13.6 302.4±18.4 115.1±5.4 131.2±6.8 422.1±17.6 173.7±8.9 764.3±18.6
Ti-10Fe 278.1±11.2 145.9±8.5 138.7±9.7 263.1±14.5 121.7±7.8 328.9±18.9 285.6±16.2 135.6±8.9 166.6±10.2 403.5±12.6 175.5±9.9 886.3±26.9
Ti-15Fe 282.3±15.3 168.5±11.2 229.4±17.4 168.7±10.5 145.1±8.8 423.9±21.2 115.6±7.6 188.4±8.2 222.5±14.6 166.7±8.7 211.3±9.9 1012.9±45.6
Ti-20Fe 265.4±14.6 146.2±6.8 227.7±7.9 202.5±10.9 141.4±13.6 517.1±15.9 225.8±11.2 156.7±10.6 268.1±16.4 165.2±6.9 199.5±10.8 982.3±35.9
Table 2  Cathodic and anodic Tafel-slopes (βc and βa) and polarization resistance (Rp) of Ti-(2~20)Fe binary alloys in different electrolytes
Fig.6  Polarization curves of pure Ti alloy, Ti-6Al-4V alloy and Ti-15Fe binary alloy in different electrolytes(a) FAS (b) PBS (c) SBF (d) SS
Alloy FAS PBS SBF SS
Pure Ti -368.4±11.2 -366±12.6 -380±19.5 -372.9±15.4
Ti-6Al-4V -374.6±11.3 -414±11.5 -433±19.1 -379±11.8
Ti-15Fe -286.9±8.2 -280.2±8.8 -168.4±11.6 -43.77±9.4
Table 3  Corrosion potential of CP Ti, Ti-6Al-4V and Ti-15Fe binary alloys in different electrolytes
Fig.7  Current densities (a) and corrosion rates (b) of CP Ti, Ti-6Al-4V and Ti-15Fe binary alloys in different electrolytes
Alloy FAS PBS SBF SS
βa βc Rp
Ωcm-2
βa βc Rp
Ωcm-2
βa βc Rp
Ωcm-2
βa βc Rp
Ωcm-2
CP Ti 685.9±26.9 301.2±13.5 66.4±7.8 444.1±26.8 318.6±16.5 103.4±8.5 308.6±15.9 171.8±10.2 36.4±4.6 525.7±26.4 195.6±6.9 98.3±4.3
Ti-6Al-4V 675.1±26.5 287.1±12.8 66.3±5.6 360.9±9.8 212.1±11.6 89.4±5.9 296.8±10.6 205.4±12.6 29.4±3.6 338.8±14.3 171.8±12.6 95.3±9.9
Ti-15Fe 282.3±15.3 168.5±11.2 229.4±17.4 168.7±10.5 145.1±8.8 423.9±21.2 115.6±7.6 188.4±8.2 222.5±14.6 166.7±8.7 211.3±9.9 1012.9±45.6
Table 4  βc, βa and Rp of CP Ti, Ti-6Al-4V and Ti-15Fe binary alloys in different electrolytes
[1] Li Y Y, Zou L M, Yang C.Fabrication of biomedical Titanium alloys with high strength and low modulus by means of powder metallurgy[J]. J. South China Univ. Technol.: Nat. Sci. Ed., 2012, 40(10): 43
[1] (李元元, 邹黎明, 杨超. 粉末冶金法合成高强低模超细晶医用钛合金[J]. 华南理工大学学报(自然科学版), 2012, 40(10): 43)
[2] Zhao X F, Niinomi M, Nakai M, et al.Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2012, 8: 1990
[3] Mohammadi S, Wictorin L, Ericsonetal L E, et al.Cast titanium as implant material[J]. J. Mater. Sci.: Mater. Med., 1995, 6: 435
[4] Wang K.The use of titanium for medical applications in the USA[J]. Mater. Sci. Eng., 1996, A213: 134
[5] Niinomi M, Kuroda D, Fukunaga K, et al.Corrosion wear fracture of new β type biomedical titanium alloys[J]. Mater. Sci. Eng., 1999, A263: 193
[6] Chen B Y, Hwang K S, Ng K L.Effect of cooling process on the α phase formation and mechanical properties of sintered Ti-Fe alloys[J]. Mater. Sci. Eng., 2011, A528: 4556
[7] Jin Q, Li Q, Wang X Y.Study of Ti-Fe alloy preparation with powder metallurgy method[J]. J. Liaoning Inst. Technol.: Nat. Sci. Ed., 2015, 35(2): 120
[7] (金秋, 李强, 王新宇. 粉末冶金法制备Ti-Fe系合金的研究[J]. 辽宁工业大学学报(自然科学版), 2015, 35(2): 120)
[8] Meng Q Y, Lu X, Xu W, et al.Microstructure and mechanical properties of powder metallurgy Ti-Fe alloys[J]. Trans. Mater. Heat Treat., 2016, 37(8): 36
[8] (孟庆宇, 路新, 徐伟等. 粉末冶金Ti-Fe合金的显微组织及力学性能[J]. 材料热处理学报, 2016, 37(8): 36)
[9] Dewidar M M, Khalil K A, Lim J K.Processing and mechanical properties of porous 316L stainless steel for biomedical applications[J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 468
[10] Yu H, Wegehaupt F J, Wiegand A, et al.Erosion and abrasion of tooth-colored restorative materials and human enamel[J]. J. Dent., 2009, 37: 913
[11] Liu Y, Chen L F, Tang H P, et al.Design of powder metallurgy titanium alloys and composites[J]. Mater. Sci. Eng., 2006, A418: 25
[12] Wang M, Song X P.Study actuality of corrosion, mechanical compatibility and biocompatibility of Titanium alloys for medical application[J]. Titanium Ind. Prog., 2008, 25(2): 13
[12] (王明, 宋西平. 医用钛合金腐蚀、力学相容性和生物相容性研究现状[J]. 钛工业发展, 2008, 25(2): 13)
[13] Majima K, Hirata T, Yamamoto M, et al.Tensile properties and corrosion behavior of hot isostatically pressed Ti-Fe alloy[J]. Nippon Kinzoku Gakkai-si, 1998, 52: 1113
[14] Solar R J, Pollack S R, Korostoff E.Titanium release from implants: a proposed mechanism [A]. Corrosion and Degradation of Implant Materials[C]. Philadelphia, PA: ASTM, 1979: 161
[15] Arcella F G, Froes F H.Producing titanium aerospace components from powder using laser forming[J]. JOM, 2000, 52(5): 28
[16] Lee E B, Han M K, Kim B J, et al.Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys[J]. Int. J. Mater. Res., 2014, 105: 847
[17] Wang B L, Zheng Y F, Zhao L C.Effects of Hf content and immersion timeon electrochemical behavior of biomedical Ti-22Nb-xHf alloys in 0.9%NaCl solution[J]. Mater. Corros., 2009, 60: 330
[18] Liu Y, Chen L F, Tang H P, et al.Design of powder metallurgy titanium alloys and composites[J]. Mater. Sci. Eng., 2006, A418: 25
[19] Zhang X P, Yu S R, He Z M, et al.Mechanical properties of new type Ti-Fe-Mo-Mn-Nb-Zr titanium alloy[J]. Chin. J. Nonferrous Met., 2002, 12(S1): 78
[19] (张新平, 于思荣, 何镇明等. 新型Ti-Fe-Mo-Mn-Nb-Zr系钛合金的力学性能[J]. 中国有色金属学报, 2002, 12(S1): 78)
[20] Bolat G, Mareci D, Chelariu R, et al.Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions[J]. Electrochim. Acta, 2013, 113: 470
[21] Hoar T P, Mears D C.Corrosion-resistant alloys in chloride solutions: materials for surgical implants[J]. Proc. Roy. Soc., 1966, 294A: 486
[22] Stern M, Geary A L.Electrochemical polarization I. A theoretical analysis of the shape of polarization curves[J]. J. Electrochem. Soc., 1957, 104: 56
[23] Majumdar P, Singh S B, Chakraborty M.The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications[J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 1132
[24] Bai Y, Hao Y L, Li S J, et al.Corrosion behavior of biomedical Ti-24Nb-4Zr-8Sn alloy in different simulated body solutions[J]. Mater. Sci. Eng., 2013, C33: 2159
[25] Mohan L, Anandan C.Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti-13Nb-13Zr[J]. Appl. Surf. Sci., 2013, 282: 281
[26] Narayanan R, Seshadri S K.Point defect model and corrosion of anodic oxide coatings on Ti-6Al-4V[J]. Corros. Sci., 2008, 50: 1521
[27] Lu J W, Zhao Y Q, Niu H Z, et al.Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications[J]. Mater. Sci. Eng., 2016, C62: 36
[28] Metikos-Hukovi? M, Kwokal A, Piljac J.The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution[J]. Biomaterials, 2003, 24: 3765
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[3] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[4] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[5] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[6] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[7] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[8] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[9] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[10] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[11] XU Wence, CUI Zhenduo, ZHU Shengli. Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications[J]. 金属学报, 2022, 58(12): 1527-1544.
[12] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[13] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[14] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[15] WANG Luning, LIU Lijun, YAN Yu, YANG Kun, LU Lili. Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals[J]. 金属学报, 2021, 57(1): 1-15.
No Suggested Reading articles found!