Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (6): 717-726    DOI: 10.11900/0412.1961.2015.00505
Orginal Article Current Issue | Archive | Adv Search |
STUDY ON REJUVENATION HEAT TREATMENT OF A DIRECTIONALLY-SOLIDIFIED SUPERALLOYDZ125 DAMAGED BY CREEP
Jing ZHANG(),Yunrong ZHENG,Qiang FENG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Jing ZHANG,Yunrong ZHENG,Qiang FENG. STUDY ON REJUVENATION HEAT TREATMENT OF A DIRECTIONALLY-SOLIDIFIED SUPERALLOYDZ125 DAMAGED BY CREEP. Acta Metall Sin, 2016, 52(6): 717-726.

Download:  HTML  PDF(1571KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The degradation of microstructure and property in turbine blades of aircraft engines is inevitable during their service. Usually, rejuvenation heat treatment is applied to regenerate the original microstructure for extending the service life of blades and improve economic returns. To date, systematic investigations about rejuvenation heat treatment of the directionally-solidified superalloys are limited. In this work, the effect of rejuvenation heat treatment on the degraded microstructure and property of DZ125 superalloy damaged by creep was investigated. The interrupted creep test was first conducted on DZ125 superalloy to simulate the damage of turbine blades during their service. Three rejuvenation heat treatments with the solution temperature at 1230, 1240 and 1250 ℃ were applied to the interrupted creep specimen. Then, the rejuvenated specimens were retested, and their microstructures as well as creep properties were compared with those of the initial interrupted creep tests. The results showed that no recrystallization occurred after the interrupted creep tests at 1.0% and 3.5% strain followed by rejuvenation heat treatment, and the critical strain for the formation of the recrystallization was between 3.5%~10.0%. The solution treatment at 1230 ℃ partially dissolved the coarse γ' phase caused by creep deformation, caused a nonuniform microstructure of γ /γ' matrix after aging treatments, and resulting in partially recovering the baseline creep property. However, the solution treatment at 1240 and 1250 ℃ could not only dissolve the coarse γ' phase but also reduce the fraction of residual γ' eutectic significantly, and then regain a uniform microstructure of γ /γ' matrix after aging treatments. Hence, the effect of rejuvenation was further improved, maintaining or exceeding the baseline creep property.

Key words:  DZ125 alloy      directional solidification      creep      rejuvenation heat treatment      recrystallization     
Received:  26 September 2015     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00505     OR     https://www.ams.org.cn/EN/Y2016/V52/I6/717

Fig.1  Microstructure of γ /γ' matrix in dendrite core of DZ125 superalloy after standard heat treatment
Fig.2  Creep curves of DZ125 superalloy crept to different strains under 980 ℃ and 207 MPa(a) strain vs time (b) strain rate vs time
Fig.3  Cross (a, c) and longitudinal (b, d) sectional microstructures in the dendrite core of DZ125 superalloy after interrupted creep tests at strains of 1.0% (a, b) and 3.5% (c, d) under 980 ℃ and 207 MPa
Fig.4  OM image of DZ125 superalloy after interrupted creep test at 1.0% strain under 980 ℃, 207 MPa and then rejuvenated by RHT-1 process (RHT-1: 1230 ℃, 3 h, A.C., 1100 ℃, 4 h, A.C., 870 ℃, 20 h, A.C.; A.C.: air cooling)
Fig.5  OM images of DZ125 superalloy after interrupted creep test at strains of 3.5% (a) and 10.0% (b) under 980 ℃, 207 MPa and then heat treatment at 1240 ℃ for 3 h
Fig.6  Cross-sectional microstructures in the dendrite core of DZ125 superalloy after interrupted creep test at strain of 1.0% under 980 ℃, 207 MPa followed by rejuvenation heat treatments of RHT-1 (a, b), RHT-2 (c) and RHT-3 (d) (RHT-2: 1240 ℃, 3 h, A.C., 1100 ℃, 4 h, A.C., 870 ℃, 20 h, A.C.; RHT-3: 1250 ℃, 2 h, A.C., 1100 ℃, 4 h, A.C., 870 ℃, 20 h, A.C.)
Fig.7  Volume fraction of γ' eutectic in DZ125 superalloy after interrupted creep test at strain of 1.0% under 980 ℃, 207 MPa followed by three rejuvenation heat treatments
Fig.8  Cross (a) and longitudinal (b) sectional microstructures of dendrite core of DZ125 superalloy after interrupted creep test at strain of 1.0% strain under 980 ℃, 207 MPa followed by RHT-2 process and retested to strain of 1.0%
Before rejuvenation After rejuvenation T2/T1
Sample Time to 1.0% Minimum Rejuvenation Time to 1.0% Minimum strain
strain T1 strain rate V1 heat treatment strain T2 rate V2
h 10-8 s-1 h 10-8 s-1
No.1 43 4.7 - 27 7.5 0.628
No.2 38 5.6 RHT-1 33 6.5 0.868
No.3 27 7.1 RHT-2 31 7.0 1.148
No.4 27 7.4 RHT-2 37 5.4 1.370
Table 1  Experimental results of interrupted creep tests at strain of 1.0% under 980 ℃, 207 MPa for DZ125 superalloy before and after rejuvenation heat treatments
[1] Feng Q, Tong J Y, Zheng Y R, Wang M L, Wei W J, Zhao H L, Yuan X F, Ding X F.Mater China, 2012; 31(12): 31
[1] (冯强, 童锦艳, 郑运荣, 王美玲, 魏文娟, 赵海龙, 袁晓飞, 丁贤飞. 中国材料进展, 2012; 31(12): 31)
[2] Li W.Gas Turbine Experiment Res, 2002; 15(2): 28
[2] (李伟. 燃气涡轮试验与研究, 2002; 15(2): 28)
[3] Tao C H, Zhang W F, Li Y J, Shi H J.Failure Anal Prevention, 2006; 1(4): 1
[3] (陶春虎, 张卫方, 李运菊, 施惠基. 失效分析与预防, 2006; 1(4): 1)
[4] Liburdi J, Lowden P, Nagy D, De Priamus T R, Shawet S. In: Proc ASME Turbo Expo, Orlando: International GasTurbine Institute, 2009: 819
[5] Guo J T.Materials Science and Engineering for Superalloys. Vol. 2, Beijing: Science Press, 2008: 405
[5] (郭建亭. 高温合金材料学(中册). 北京: 科学出版社, 2008: 405)
[6] Davies P W, Dennison J P, Evans H E.J Inst Met, 1966; 94(8): 270
[7] Steven R A, Flewitt P E J.J Mater Sci, 1978; 13: 367
[8] Dennison J P, Elliott I C, Evans H E.In: Tien J K, Wlodek S T, Morrow H, Gell M, Maurer G E eds., Superalloys 1980, Ohio: TMS, 1980: 671
[9] Dennison J P, Wilshire B.In: Taplin D M R ed., Fracture 1977, Proc 4th Int Conf on Fracture, Waterloo: University of Waterloo Press, 1977: 635
[10] Liburdi J, Stephens J O. ASME1980 International Gas Turbine Conference and Products Show, New Orleans: American Society of Mechanical Engineers, 1980: 80-GT-181
[11] Rettberg L H, Tsunekane M, Pollock T M.In: Huron E S, Reed R C, HardyM C, Mills M J, Montero R E, Portella P D, Telesman J eds., Superalloys 2012, Warrendale, Pennsylvania: TMS, 2012: 341
[12] Koul A K, Immarigeon J P, Castillo R, Lowden P, Liburdi J.In: Reichman S, Nuhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale, Pennsylvania: TMS, 1988: 755
[13] Davies P W, Dennison J P.Met Sci, 1975; 9: 319
[14] China Aeronautical Materials Handbook Editorial Committee. China Aeronautical Materials Handbook. Vol.2, Beijing: China Sandard Pess, 2002: 771
[14] (中国航空材料手册编辑委员会. 中国航空材料手册.第2卷, 北京: 中国标准出版社, 2002: 771)
[15] Nathal M V, Mackay R A.Mater Sci Eng, 1987; A85: 127
[16] Davies P W, Dennison J P.Met Sci, 1975; 9: 319
[17] Koul A K, Castillo R.Metall Trans, 1988; 19A: 2049
[18] She L, Chen R Z, Wang T.Trans Mater Heat Treatment, 2002; (4): 13
[18] (佘力, 陈荣章, 王涛. 金属热处理学报, 2002; (4): 13)
[19] She L, Chen R Z. Rare Met, 1998; 22(4): 19(佘力, 陈荣章. 稀有金属, 1998; 22(4): 19)
[20] Chen R Z, Wang L B, Wang Y P.Acta Aeron Astronaut Sin, 1988; 7: 368
[20] (陈荣章, 王罗宝, 王玉屏. 航空学报, 1988; 7: 368)
[21] Zheng Y R, Wang L B, Li C G.Chin J Met Sci Technol, 1989; 5(2): 90
[22] Tian S G, Tian N, Yu H C, Meng X L, Li Y.Mater Sci Eng, 2014; A615: 469
[23] Zheng Y R, Cai Y L, Wang L B.Acta Metall Sin, 1983; 19: 30
[23] (郑运荣, 蔡玉林, 王罗宝. 金属学报, 1983; 19: 30
[24] Xie G, Wang L, Zhang J, Lou L H.Metall Mater Trans, 2008; 39A: 206
[25] Koizumi Y, Kobayashi T, Harada H, Yamagata T.In: Strang A, Banks W M, Conroy R D, Goulette M J eds., Advances in Turbine Materials, Design and Manufacturing, Newcastle upon Tyne: Maney Materials Science, 1997: 679
[26] Decker R F, Dewitt R R.J Met, 1965; 17: 139
[27] Jackson J J, Donachie M J, Gell M, Henricks R J.Metall Trans, 1977; 8A: 1615
[28] Ross M D, Bennett G T, Stewart D C.Rejuvenation of Turbine Blade Material by Thermal Treatment. West Palm Beach, Florida: Pratt and Whitney Aircraft, 1979: 14
[29] Zheng Y R, Han Y F.Acta Metall Sin, 2002; 38: 1203
[29] (郑运荣, 韩雅芳. 金属学报, 2002; 38: 1203)
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[9] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[10] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[11] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[12] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[14] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[15] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
No Suggested Reading articles found!