|
|
TENSILE ANISOTROPY OF SINGLE CRYSTAL SUPERALLOY DD9 |
Xiaoguang WANG,Jiarong LI( ),Jian YU,Shizhong LIU,Zhenxue SHI,Xiaodai YUE |
Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 |
|
Cite this article:
Xiaoguang WANG,Jiarong LI,Jian YU,Shizhong LIU,Zhenxue SHI,Xiaodai YUE. TENSILE ANISOTROPY OF SINGLE CRYSTAL SUPERALLOY DD9. Acta Metall Sin, 2015, 51(10): 1253-1260.
|
Abstract The Ni-based single crystal superalloys are widely used in key hot section parts of advanced aero engine due to the superior high temperature mechanical properties. Multi-axial stresses resulting from complex temperature and stress state happen frequently in blades during service, thus the mechanical properties of three orientations need to be studied. However, most of these works are conducted in the first and second single crystal superalloys and there is rare report concerning the third single superalloys. Therefore, in this work the microstructures and tensile properties of the third generation single crystal superalloy DD9 with [001], [011] and [111] orientations were investigated by OM, SEM, TEM and tensile testing machine at 760 and 1100 ℃. The results show that as-cast dendritic structures and heat treated γ’ of DD9 alloy with three orientations are different on the section perpendicular to the crystal growth direction. With rising of temperature, the ultimate tensile strength and yield strength decrease and tensile anisotropy drops obviously. The ultimate tensile strength and yield strength of DD9 alloy with [001] orientation are higher than those with [011] and [111] orientation except that the yield strength with [001] orientation is slightly lower than that with [011] orientation. With temperature increasing, the fracture characteristic transforms from quasi-cleavage at 760 ℃ to dimple at 1100 ℃. At 760 ℃, very high density dislocations appear in the matrix channels with [001], [011] and [111] orientations, but some stacking faults are present only in γ’ particles with [001] orientation. At 1100 ℃, the high density dislocation networks resulted in the matrix channels and particles of the alloy with [001] and [111] orientations, while a large number of deformation twins are found in samples with [011] orientation.
|
|
[1] | Sato A, Harada H. Scr Mater, 2006; 54: 1679 | [2] | Cetel A D, Duhl D N. In: Recichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Seven Springs, PA: TMS, 1988: 235 | [3] | Harris K, Erickson G L, Sikkenga S L, Brentnall W D, Aurrecoechea J M, Kubarych K G. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Pennsylvania, PA: TMS, 1992: 567 | [4] | Ross E W, O'hara K S. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Seven Springs, PA: TMS, 1996: 19 | [5] | Walston W S, O'hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Seven Springs, PA: TMS, 1996: 27 | [6] | Seth B B. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 3 | [7] | Shah D M, Duhl D N. In: Gell M, Kortovich C S, Bricknell R H eds., Superalloys 1984, Seven Springs, PA: TMS, 1984: 105 | [8] | Dalal R P, Thomasc R, Dardi L E. In: Gell M, Kortovich C S, Bricknell R H eds., Superalloys 1984, Seven Springs, PA: TMS, 1984: 185 | [9] | Liu J L, Jin T, Zhang J H, Hu Z Q. Acta Metall Sin, 2001; 37: 1233 (刘金来, 金 涛, 张静华, 胡壮麒. 金属学报, 2001; 37: 1233) | [10] | MacKay R A, Maier R D. Metall Mater Trans, 1982; 13A: 1747 | [11] | Li J R, Shi Z X, Yuan H L, Liu S Z, Zhao J Q, Han M, Liu W W. J Mater Eng, 2008; (12): 6 (李嘉荣, 史振学, 袁海龙, 刘世忠, 赵金乾, 韩 梅, 刘维维. 材料工程, 2008; (12): 6) | [12] | Li J R, Liu S Z, Shi Z X, Luo Y S, Wang X G. J Iron Steel Res, 2011; 23(suppl 2): 337 (李嘉荣, 刘世忠, 史振学, 骆宇时, 王效光. 钢铁研究学报, 2011; 23(增刊2): 337) | [13] | Miner R V, Voigt R C, Gayda J, Gabb T P. Metall Mater Trans, 1986; 17A: 491 | [14] | Wang L N, Liu Y, Yu J J, Xu Y, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2009; A505: 144 | [15] | Ardakani M G, McLean M, Shollock B A. Acta Mater, 1999; 47: 2593 | [16] | Milligan W W, Antolovich S D. Metall Mater Trans, 1991; 22A: 2309 | [17] | Shi Z X, Li J R, Liu S Z, Zhao J Q. J Iron Steel Res Int, 2011; 18: 66 | [18] | Kakehi K. Metall Mater Trans, 1999; 30A: 1249 | [19] | Hu H Q. Fundamentals of Metal Solidification. 2nd Ed.,Beijing: China Machine Press, 2000: 142 (胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 142) | [20] | Zhang L F, Yan P, Zhao J C, Zeng Q, Han F K. J Mater Eng, 2011; (6): 67 (张龙飞, 燕 平, 赵京晨, 曾 强, 韩凤奎. 材料工程, 2011; (6): 67) | [21] | Feng D. Physics of Metals. Beijing: Science Press, 1999: 326 (冯 端. 金属物理学. 北京: 科学出版社, 1999: 326) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|