Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (10): 1253-1260    DOI: 10.11900/0412.1961.2015.00369
Current Issue | Archive | Adv Search |
TENSILE ANISOTROPY OF SINGLE CRYSTAL SUPERALLOY DD9
Xiaoguang WANG,Jiarong LI(),Jian YU,Shizhong LIU,Zhenxue SHI,Xiaodai YUE
Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

Xiaoguang WANG,Jiarong LI,Jian YU,Shizhong LIU,Zhenxue SHI,Xiaodai YUE. TENSILE ANISOTROPY OF SINGLE CRYSTAL SUPERALLOY DD9. Acta Metall Sin, 2015, 51(10): 1253-1260.

Download:  HTML  PDF(8239KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Ni-based single crystal superalloys are widely used in key hot section parts of advanced aero engine due to the superior high temperature mechanical properties. Multi-axial stresses resulting from complex temperature and stress state happen frequently in blades during service, thus the mechanical properties of three orientations need to be studied. However, most of these works are conducted in the first and second single crystal superalloys and there is rare report concerning the third single superalloys. Therefore, in this work the microstructures and tensile properties of the third generation single crystal superalloy DD9 with [001], [011] and [111] orientations were investigated by OM, SEM, TEM and tensile testing machine at 760 and 1100 ℃. The results show that as-cast dendritic structures and heat treated γ’ of DD9 alloy with three orientations are different on the section perpendicular to the crystal growth direction. With rising of temperature, the ultimate tensile strength and yield strength decrease and tensile anisotropy drops obviously. The ultimate tensile strength and yield strength of DD9 alloy with [001] orientation are higher than those with [011] and [111] orientation except that the yield strength with [001] orientation is slightly lower than that with [011] orientation. With temperature increasing, the fracture characteristic transforms from quasi-cleavage at 760 ℃ to dimple at 1100 ℃. At 760 ℃, very high density dislocations appear in the matrix channels with [001], [011] and [111] orientations, but some stacking faults are present only in γ’ particles with [001] orientation. At 1100 ℃, the high density dislocation networks resulted in the matrix channels and particles of the alloy with [001] and [111] orientations, while a large number of deformation twins are found in samples with [011] orientation.

Key words:  single crystal superalloy DD9      tensile property      anisotropy      fracture surface      dislocation     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00369     OR     https://www.ams.org.cn/EN/Y2015/V51/I10/1253

Fig.1  Dendrite structures of as-cast DD9 alloy with [001] (a), [011] (b) and [111] (c) orientations
Fig.2  Microstructures of heat treated DD9 alloy with [001] (a), [011] (b) and [111] (c) orientations
Fig.3  Typical stress-strain curves of DD9 alloy with [001], [011] and [111] orientations at 760 and 1100 ℃
Fig.4  Tensile properties of DD9 alloy with [001], [011] and [111] orientations at 760 and 1100 ℃
Fig.5  Tensile fracture surfaces (a1, b1, c1) and longitudinal morphologies (a2, b2, c2) of DD9 alloy with [001] (a1, a2), [011] (b1, b2) and [111] (c1, c2) orientations at 760 ℃
Fig.6  Tensile fracture surfaces (a1, b1, c1) and longitudinal morphologies (a2, b2, c2) of DD9 alloy with [001] (a1, a2), [011] (b1, b2) and [111] (c1, c2) orientations at 1100 ℃
Fig.7  TEM images of dislocation structures on tensile fracture surface of DD9 alloy with [001] (a, b), [011] (c, d) and [111] (e, f) orientations at 760 ℃ (a, c, e) and 1100 ℃ (b, d, f)
Fig.8  Schematics of γ’ phase of DD9 alloy with [001] (a), [011] (b) and [111] (c) orientations
[1] Sato A, Harada H. Scr Mater, 2006; 54: 1679
[2] Cetel A D, Duhl D N. In: Recichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Seven Springs, PA: TMS, 1988: 235
[3] Harris K, Erickson G L, Sikkenga S L, Brentnall W D, Aurrecoechea J M, Kubarych K G. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Pennsylvania, PA: TMS, 1992: 567
[4] Ross E W, O'hara K S. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Seven Springs, PA: TMS, 1996: 19
[5] Walston W S, O'hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Seven Springs, PA: TMS, 1996: 27
[6] Seth B B. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Seven Springs, PA: TMS, 2000: 3
[7] Shah D M, Duhl D N. In: Gell M, Kortovich C S, Bricknell R H eds., Superalloys 1984, Seven Springs, PA: TMS, 1984: 105
[8] Dalal R P, Thomasc R, Dardi L E. In: Gell M, Kortovich C S, Bricknell R H eds., Superalloys 1984, Seven Springs, PA: TMS, 1984: 185
[9] Liu J L, Jin T, Zhang J H, Hu Z Q. Acta Metall Sin, 2001; 37: 1233 (刘金来, 金 涛, 张静华, 胡壮麒. 金属学报, 2001; 37: 1233)
[10] MacKay R A, Maier R D. Metall Mater Trans, 1982; 13A: 1747
[11] Li J R, Shi Z X, Yuan H L, Liu S Z, Zhao J Q, Han M, Liu W W. J Mater Eng, 2008; (12): 6 (李嘉荣, 史振学, 袁海龙, 刘世忠, 赵金乾, 韩 梅, 刘维维. 材料工程, 2008; (12): 6)
[12] Li J R, Liu S Z, Shi Z X, Luo Y S, Wang X G. J Iron Steel Res, 2011; 23(suppl 2): 337 (李嘉荣, 刘世忠, 史振学, 骆宇时, 王效光. 钢铁研究学报, 2011; 23(增刊2): 337)
[13] Miner R V, Voigt R C, Gayda J, Gabb T P. Metall Mater Trans, 1986; 17A: 491
[14] Wang L N, Liu Y, Yu J J, Xu Y, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2009; A505: 144
[15] Ardakani M G, McLean M, Shollock B A. Acta Mater, 1999; 47: 2593
[16] Milligan W W, Antolovich S D. Metall Mater Trans, 1991; 22A: 2309
[17] Shi Z X, Li J R, Liu S Z, Zhao J Q. J Iron Steel Res Int, 2011; 18: 66
[18] Kakehi K. Metall Mater Trans, 1999; 30A: 1249
[19] Hu H Q. Fundamentals of Metal Solidification. 2nd Ed.,Beijing: China Machine Press, 2000: 142 (胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 142)
[20] Zhang L F, Yan P, Zhao J C, Zeng Q, Han F K. J Mater Eng, 2011; (6): 67 (张龙飞, 燕 平, 赵京晨, 曾 强, 韩凤奎. 材料工程, 2011; (6): 67)
[21] Feng D. Physics of Metals. Beijing: Science Press, 1999: 326 (冯 端. 金属物理学. 北京: 科学出版社, 1999: 326)
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[3] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[4] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[5] GE Jinguo, LU Zhao, HE Siliang, SUN Yan, YIN Shuo. Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(1): 157-168.
[6] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[7] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[8] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[9] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[10] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[11] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[12] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[13] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[14] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[15] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
No Suggested Reading articles found!