|
|
EFFECTS OF Hf ON HIGH TEMPERATURE LOW STRESS RUPTURE PROPERTIES OF A SECOND GENERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY DD11 |
Yunsong ZHAO1,2,Jian ZHANG2,Yushi LUO2,Dingzhong TANG2,Qiang FENG1,3( ) |
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 2 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 3 Beijing Key Laboratory of Special Melting and Reparation of High-end Metal Materials, Beijing 100083 |
|
Cite this article:
Yunsong ZHAO,Jian ZHANG,Yushi LUO,Dingzhong TANG,Qiang FENG. EFFECTS OF Hf ON HIGH TEMPERATURE LOW STRESS RUPTURE PROPERTIES OF A SECOND GENERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY DD11. Acta Metall Sin, 2015, 51(10): 1261-1272.
|
Abstract The effect of Hf on the as-cast, heat-treated microstructures and stress rupture properties under 1100 ℃ and 140 MPa was investigated in four second generation Ni-based single crystal superalloys DD11 with various levels of Hf (0~0.80%, mass fraction) additions. The results indicate that increasing Hf addition resulted in decreasing the solidus and liquidus temperatures, while it enhanced the volume fraction of (γ+γ’) eutectic and MC carbide as well as solidification segregation. The number of micropores reduced significantly and the volume fraction of residual (γ+γ’) eutectic and MC carbide increased after heat treatment as Hf content increased. Compared to the Hf-free alloy, the stress rupture life was observed to increase in the alloys with 0.40%Hf, but dropped in the alloy containing 0.80%Hf. Hf addition increased the elemental partitioning ratio of Re, Mo, Cr, resulting in increasing γ/γ’ misfit and decreasing the spacing of γ/γ’ interfacial dislocation networks. The solution strengthing effect was also improved with the enhanced concentration of Re, Mo and Cr in γ phase in Hf-modified alloys. However, when the Hf content was 0.80% in DD11 alloy, the stress rupture properties was decreased obviously due to high volume fraction of residual (γ+γ’) eutectic and MC carbide in heat-treated microstructures.
|
|
Fund: Supported by National High Technology Research and Development Program (Nos.2012AA03-A513 and 2012AA03A511), National Basic Research Program of China (No.2010-CB631201) and Science Foundation of Ministry of Education of China (No.625010337) |
[1] | Pollock T M, Tin S. J Propul Power, 2006; 22: 361 | [2] | Newell M, Devendra K, Jennings P A, D'Souza N. Mater Sci Eng, 2005; A412: 307 | [3] | Siegel D J, Hamilton J. Acta Mater, 2005; 53: 87 | [4] | Harris K, Wahl J B. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 45 | [5] | Chen Q Z, Jones C N, Knowles D M. Mater Sci Eng, 2004; A385: 402 | [6] | Shah D M, Cetel A. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 295 | [7] | Sellamuthu R, Giamei A F. Metall Trans, 1986; 17A: 419 | [8] | Duhl D, Sullivan C. J Met, 1971; 23: 38 | [9] | Hou J S, Guo J T, Wu Y X, Zhou L Z, Ye H Q. Mater Sci Eng, 2010; A527: 1548 | [10] | Zheng Y R, Cai Y L, Ruan Z C, Ma S W. J Aeronaut Mater, 2006; 26: 25 (郑运荣, 蔡玉林, 阮中慈, 马书伟. 航空材料学报, 2006; 26: 25) | [11] | Chen Q Z, Jones N, Knowles D M. Acta Mater, 2002; 50: 1095 | [12] | Wang L, Wang D, Liu T, Li X W, Jiang W G, Zhang G, Lou L H. Mater Charact, 2015; 104: 81 | [13] | Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2004; A385: 105 | [14] | Sellamuthu R, Brody H, Giamei A. Metall Trans, 1986; 17B: 347 | [15] | Baldan A. J Mater Sci, 1990; 25: 4341 | [16] | Ren H L. Technology of Metallographic Experiment. Beijing: Metallurgy Industry Press, 2006: 159 (任怀亮.金相实验技术. 北京: 冶金工业出版社, 2006: 159) | [17] | Zhang J X, Wang J C, Harada H, Koizumi Y. Acta Mater, 2005; 53: 4623 | [18] | Zhang J X, Murakumo T, Harada H, Koizumi Y. Scr Mater, 2003; 48: 287 | [19] | Gungor M N. Metall Trans, 1989; 20A: 2529 | [20] | Lecomte-Beckers J. Metall Trans, 1988; 19A: 2341 | [21] | Anton D L, Giamei A F. Mater Sci Eng, 1985; 76: 173 | [22] | Chen Q Z, Kong Y H, Jones C N, Knowles D M. Scr Mater, 2004; 51: 155 | [23] | Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Lett, 2004; 58: 2290 | [24] | Fuchs G E. J Mater Eng Perform, 2002; 11: 19 | [25] | Shi Q Y, Li X H, Zheng Y R, Xie G, Zhang J, Feng Q. Acta Metall Sin, 2012; 48: 1237 (石倩颖, 李相辉, 郑运荣, 谢 光, 张 健, 冯 强. 金属学报, 2012; 48: 1237) | [26] | Reed R C. The Superalloys: Fundamentals and Applications. Cambridge,UK: Cambridge University Press, 2006: 53 | [27] | Kong Y H. PhD Dissertation, The University of Hong Kong, 2005 | [28] | Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Mater Sci Eng, 2014; A626: 406 | [29] | Chen J Y, Feng Q, Cao L M, Sun Z Q. Mater Sci Eng, 2011; A528: 3791 | [30] | Neumeier S, Pyczak F, Goken M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 109 | [31] | Rowland L J, Feng Q, Pollock T M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 697 | [32] | Kablov E N, Petrushin N V. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 901 | [33] | Carroll L J, Feng Q, Pollock T M. Metall Mater Trans, 2008; 39A: 1290 | [34] | Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 737 | [35] | Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans, 2006; 37A: 2927 | [36] | Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 35 | [37] | Chen J Y, Zhao B, Feng Q, Cao L M. In: Joseph R, Omer D, Donna B eds., TMS 2009 Annual Meeting and Exhibition, San Francisco: Minerals, Metals & Materials Soc, 2009: 233 | [38] | Heckl A, Neumeier S, G?ken M, Singer R. Mater Sci Eng, 2011; A528: 3435 | [39] | Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H. Scr Mater, 2003; 49: 1041 | [40] | Fleischmann E, Miller M K, Affeldt E, Glatzel U. Acta Mater, 2015; 87: 350 | [41] | Mottura A, Warnken N, Miller M K, Finnis M W, Reed R C. Acta Mater, 2010; 58: 931 | [42] | Hu P P, Chen J Y, Feng Q, Chen Y H, Cao L M, Li X H. Chin J Nonferrous Met, 2011; 21: 332 (胡聘聘, 陈晶阳, 冯 强, 陈艳辉, 曹腊梅, 李相辉. 中国有色金属学报, 2011; 21: 332) | [43] | Hopgood A A, Martin J W. Mater Sci Eng, 1986; 82: 27 | [44] | Fritzemeier L G. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale: Minerals, Metals & Materials Soc, 1988: 265 | [45] | Wilson B C, Hickman J A, Fuchs G E. J Met, 2003; 55: 35 | [46] | Kong Y H, Chen Q Z, Knowles D M. J Mater Sci, 2004; 39: 6993 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|