Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (10): 1288-1296    DOI: 10.11900/0412.1961.2015.00338
Current Issue | Archive | Adv Search |
MODELING AND SIMULATION OF DIRECTIONAL SOLIDIFICATION BY LMC PROCESS FOR NICKEL BASE SUPERALLOY CASTING
Xuewei YAN1,Ning TANG1,Xiaofu LIU2,Guoyan SHUI2,Qingyan XU1(),Baicheng LIU1
1 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2 Shenyang Research Institute of Foundry, Shenyang 110022
Cite this article: 

Xuewei YAN,Ning TANG,Xiaofu LIU,Guoyan SHUI,Qingyan XU,Baicheng LIU. MODELING AND SIMULATION OF DIRECTIONAL SOLIDIFICATION BY LMC PROCESS FOR NICKEL BASE SUPERALLOY CASTING. Acta Metall Sin, 2015, 51(10): 1288-1296.

Download:  HTML  PDF(5902KB) 
Export:  BibTeX | EndNote (RIS)      
Key words:  liquid-metal cooling      mathematical model      directional solidification      numerical simulation     
Fund: Supported by National Basic Research Program of China (No.2011CB706801), National Natural Science Foundation of China (Nos.51171089 and 51374137) and National Science and Technology Major Projects of China (Nos.2012ZX04012-011 and 2011ZX04014-052)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00338     OR     https://www.ams.org.cn/EN/Y2015/V51/I10/1288

Fig.1  Simplified schematic of liquid-metal cooling (LMC) directional solidification furnace
Fig.2  Three dimensional model of sample casting and shell mold
Fig.3  Simulation and experimental results of cooling curves
Fig.4  Simulation and experimental results of cooling rates
Fig.5  Simulation (a, c) and experimental (b, d) results of grain growth in outer side of sample at withdrawal rates of 6 mm/min (a, b) and 8 mm/min (c, d)
Fig.6  Simulation (a, c) and experimental (b, d) results of grain growth in inner side of sample at withdrawal rates of 6 mm/min (a, b) and 8 mm/min (c, d)
Fig.7  Change of mushy zone curvature along with the height of the solid/liquid (S/L) interface at different withdrawal rates
Fig.8  Change of initial mushy zone at 24 mm/min withdrawal rate
Fig.9  Simulation results of primary dendrite arm space l1 at 8 mm/min withdrawal rate
Fig.10  Simulationand experimental results of l1 at 8 mm/min withdrawal rate
Fig.11  Simulationresult of secondary dendrite arm space l2 at 8 mm/min withdrawal rate
Fig.12  Simulation and experimental results of l2 at 8 mm/min withdrawal rate
Fig.13  Cross section dendritic structures at withdrawal rates of 9 mm/min (a), 12 mm/min (b) and 15 mm/min (c)
Fig.14  Simulation (a) and experimental (b) results at 12 mm/min withdrawal rate
[1] Nabarro F R. Mater Sci Eng, 1994; A184: 167
[2] Huang Q Y,Li H K. Superalloys. Beijing: Metallurgical Industry Press, 2000: 4 (黄乾尧,李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 4)
[3] Guo R F, Liu L, Li Y F, Zhao X B, Zhang J, Fu H Z. Foundry, 2014; 63: 145 (郭如峰, 刘 林, 李亚峰, 赵新宝, 张 军, 傅恒志. 铸造, 2014; 63: 145)
[4] Bridgman P W. US Pat, 88650, 1926
[5] Tang N, Wang Y L, Xu Q Y, Zhao X H, Liu B C. Acta Metall Sin, 2015; 51: 499 (唐 宁, 王艳丽, 许庆彦, 赵希宏, 柳百成. 金属学报, 2015; 51: 499)
[6] Pan D, Xu Q Y, Yu J, Liu B C, Li J R, Yuan H L, Jin H P. Int J Cast Met Res, 2008; 21: 308
[7] Liu L, Zhang J, Shen J, Huang T W, Fu H Z. Mater China, 2010; 29(7): 1 (刘 林, 张 军, 沈 军, 黄太文, 傅恒志. 中国材料进展, 2010; 29(7): 1)
[8] Pan D, Xu Q Y, Liu B C, Li J R, Yuan H L, Jin H P. JOM, 2010; 62(5): 30
[9] Tang N, Xu Q Y, Liu B C. Spec Casting Nonferrous Alloy, 2011; 31: 1028 (唐 宁, 许庆彦, 柳百成. 特种铸造及有色合金, 2011; 31: 1028)
[10] Tang N, Xu Q Y, Liu B C. Foundry Technol, 2012; 33: 558 (唐 宁, 许庆彦, 柳百成. 铸造技术, 2012; 33: 558)
[11] Rzyankina E, Szeliga D, Mahomed N, Nowotnik A. Appl Mech Mater, 2013; 372: 54
[12] Seth B B. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale, PA: TMS, 2000: 16
[13] Singer R F. In: Coutsouradis D, Davidson J H, Ewald J, Greenfield P, Khan T, Malik M, Meadowcroft D B, RegisV, Scarlin R B, Schubert F, Thornton D V eds., Materials for Advanced Power Engineering. Dordrecht, Netherlands: Kluwer Academic Publishers Group, 1994: 1707
[14] Lund C H, Hockin J. In: Sims C T, Hagel W C eds., Superalloys 1972, New York: John Wiley & Sons, 1972: 403
[15] Kermanpur A, Rappaz M, Varahram N, Davami P. Metall Mater Trans, 2000; 31B: 1293
[16] Konter M, Kats E, Hofmann N. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale, PA: TMS, 2000: 189
[17] Nakagawa Y G, Ohotomo Y, Saiga Y. In: Tien J K, Wlodek S T, Morrow H I, Gell M, Mauer G E eds., Superalloys 1980, Metals Park, OH: American Society for Metals, 1980: 267
[18] Graham L D, Rauguth B L. US Pat, 6443213, 2002
[19] Tschinkel J G, Giamei A F, Kearn B H. US Pat, 3763926, 1973
[20] Giamei A F, Tschinkel J G. Metall Trans, 1976; 7A: 1427
[21] Elliott A J, Karney G B, Pollock T M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale, PA: TMS, 2004: 421
[22] Liu J H, Liu L, Huang T W, Ge B M, Zhang J, Fu H Z, Yu B, Su G Q. Foundry, 2010; 59: 822 (刘金洪, 刘 林, 黄太文, 葛丙明, 张 军, 傅恒志, 于 波, 苏贵桥. 铸造, 2010; 59: 822)
[23] Elliott A J, Tin S, King W T, Huang S C, Pollock T M. Metall Mater Trans, 2004; 35A: 3221
[24] Kermanpur A, Varahram N, Davami P. Metall Mater Trans, 2000; 31B: 1293
[25] Miller J D, Yuan L, Lee P D, Pollock T M. Acta Mater, 2014; 69: 47
[26] Lu Y Z, Xi H J, Shen J, Zheng W, Xie G, Lou L H, Zhang J. Acta Metall Sin, 2015; 51: 603 (卢玉章, 席会杰, 申 健, 郑 伟, 谢 光, 楼琅洪, 张 健. 金属学报, 2015; 51: 603)
[27] Tang N, Yan X W, Xu Q Y, Liu B C. Foundry, 2014; 63: 347 (唐 宁, 闫学伟, 许庆彦, 柳百成. 铸造, 2014; 63: 347)
[28] Rappaz M, Gandin C A. Acta Metall Mater, 1993; 41: 345
[29] Nastac L. Acta Mater, 1999; 47: 4253
[30] Thevoz P, Desbiolles J L, Rappaz M. Metall Trans, 1989; 20A: 311
[31] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823
[32] Wang W, Lee P D, McLean M. Acta Mater, 2003; 51: 2971
[33] Tang N, Sun C B, Zhang H, Xu Q Y, Liu B C. Rare Met Mater Eng, 2013; 42: 2298 (唐 宁, 孙长波, 张 航, 许庆彦, 柳百成. 稀有金属材料与工程, 2013; 42: 2298)
[34] Ren W P, Li Q, Xiao C B, Song J X, He L M, Huang G H, Cao C X. J Mater Eng, 2014; (6): 74 (任维鹏, 李 青, 肖程波, 宋尽霞, 何利民, 黄光宏, 曹春晓. 材料工程, 2014; (6): 74)
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[7] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[8] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[9] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[11] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[12] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[13] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[14] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[15] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
No Suggested Reading articles found!