|
|
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ni3Al-BASED SINGLE CRYSTSAL ALLOY IC21 |
Haigen ZHAO,Shusuo LI,Yanling PEI,Shengkai GONG( ),Huibin XU |
School of Materials Science and Engineering, Beihang University, Beijing 100191 |
|
Cite this article:
Haigen ZHAO,Shusuo LI,Yanling PEI,Shengkai GONG,Huibin XU. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ni3Al-BASED SINGLE CRYSTSAL ALLOY IC21. Acta Metall Sin, 2015, 51(10): 1279-1287.
|
Abstract According to the requirement of high-pressure turbine guide vane during service, the aim of this work is to design a single crystal Ni3Al-based alloy named IC21 with low density, low cost, and high strength which can be used as high-pressure turbine guide vane material. The mass fraction of the Re has been limited less than 1.5% on purpose. The single crystal bars of IC21 were prepared by high rate solidification method. The density of IC21 is 8.0 g/cm3 and the incipient melting temperature was identified by metallography. After standard heat treatment, the distribution of the g' precipitates is uniform with the average size of about 420 nm, and volume fraction of 80%. The tensile and yield strengths at 1100 ℃ are 490 and 470 MPa, respectively. Moreover, IC21 shows superior creep properties, the stress-rupture life at 1100 ℃,140 MPa is 170.5 h and at 1150 ℃,100 MPa still remains 110.0 h. The microstructure stability of IC21 alloy at 1080 ℃ for as long as 1000 h were evaluated. The results show that no precipitated phase exists during thermal exposure at 1080 ℃, which exhibits good stability. The oxidation kinetic curves of IC21 alloy follows a parabolic rate law in different oxidation stage during cycle oxidation for 100 h in air. IC21 alloy has a good high temperature oxidation resistance, the strengthening mechanism are attributed to high volume fraction of g' phase, large negative misfit and well-established interface networks.
|
|
Fund: Supported by National Natural Science Foundation of China (No.51371014) and Joint Funds of National Natural Science Foundation of China (No.U1435207) |
[1] | Chen J G. Aerona Sci Technol, 1994; (5): 9 (陈金国. 航空科学技术, 1994; (5): 9) | [2] | Kong X X. Aerona Sci Technol, 1994; (5): 21 (孔祥鑫. 航空科学技术, 1994; (5): 21) | [3] | Sequeira C A C, Amaral L. Corros Prot Mater, 2013; 32(3): 75 | [4] | Zheng Y R, Wang X P, Dong J X, Han Y F. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Proc of 9th Int Symposium on Superalloys, Warrendale: TMS, 2000; 305 | [5] | Frazier D J, Whetstone J R, Harris K, Erickson G L, Schwer R E. High Temperature Materials for Power Engineering. Boston: Kluwer Academic Publishers, 1990: 1281 | [6] | Waudby P E, Benson J M, Stander C M, Pennefather R, McColvin G. Advances in Turbine Materials Design and Manufacturing. London: Institute of Materials, 1997: 322 | [7] | Quan D L, Liu S L, Li J H,?Liu G W. J Therm Sci, 2005; 14(1): 56 | [8] | Leontiev A I. J Heat Transfer, 1998; 121: 509 | [9] | Hartnett J P, Rohsenow W M. Handbook of Heat Transfer Applications. New York: McGraw-Hill Professional, 1985: 1 | [10] | Song J X, Xiao C B, Li S S, Han Y F. Acta Metall Sin, 2002; 38: 250 (宋尽霞, 肖程波, 李树索, 韩雅芳. 金属学报, 2002; 38: 250) | [11] | Xiao C B, Han Y F, Li S S, Wang D G, Song J X, Li Q. Mater Lett, 2003; 57: 3843 | [12] | Ding R G, Ojo O A. Scr Mater, 2006; 54: 859 | [13] | Zhang H. PhD Dissertation, Beihang University, 2015 (张 恒. 北京航空航天大学博士学位论文, 2015) | [14] | Sajjadi S A, Zebarjad S M, Guthrie R I L, Isac M. J Mater Process Technol, 2006; 175: 376 | [15] | Mulier L, Glatzel U, Feller K. Acta Metall Mater, 1992; 40: 1321 | [16] | Glatzedl U, Feller-Kniepmeier M. Scr Metall, 1989; 23: 1839 | [17] | Zhang J H, Yao X D, Zhang Z Y, Li Y A, Guan H R, Hu Z Q. Acta Metall Sin, 1994; 30: 453 (张静华, 姚向东, 张志亚, 李英敖, 管恒荣, 胡壮麒. 金属学报, 1994; 30: 453) | [18] | Ren Y L, Jin T, Guan H R, Hu Z Q. Mater Mech Eng, 2001; 25(4): 7 (任英磊, 金 涛, 管恒荣, 胡壮麒. 机械工程材料, 2001; 25(4): 7) | [19] | Ning L K, Zheng Z, Jin T, Tang S, Liu E Z, Tong J, Yu Y S, Sun X F. Acta Metall Sin, 2014; 30: 1011 (宁礼奎, 郑 志, 金 涛, 唐 颂, 刘恩泽, 佟 健, 于永泗, 孙晓峰. 金属学报, 2014; 30: 1011) | [20] | Wei L. Master Thesis, Beihang University, 2011 (魏 丽. 北京航空航天大学硕士学位论文, 2011) | [21] | Sengupta A, Putatunda S K, Bartosiewicz L, Hangas J, Nailos P J, Peputapeck M, Alberts F E. J Mater Eng Perform, 1994; 3: 73 | [22] | Pollock T M, Argon A. Acta Metall Mater, 1992; 40: 1 | [23] | Zhang J X, Murakumo T, Koizumi Y, Harada H. J Mater Sci, 2003; 38: 4883 | [24] | Zhang J X, Wang J C, Harada H, Koizumi Y J. Acta Mater, 2005; 53: 4623 | [25] | Yang S, Zhang J, Luo Y S, Zhao Y S, Tang D Z, Cao G Q. Mater Sci Forum, 2013; 747: 777 | [26] | Feller K M, Link T. Metall Trans, 1989; 20A: 1233 | [27] | Liu L. PhD Dissertation, Beihang University, 2014 (刘 磊. 北京航空航天大学博士学位论文, 2014) | [28] | Huang L, Sun X F, Guan H R, Hu Z Q. Surf Coat Technol, 2006; 200: 6863 | [29] | Ying W, Toshio N. Surf Coat Technol, 2007; 202; 140 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|