Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (12): 1481-1488    DOI: 10.11900/0412.1961.2015.00082
Current Issue | Archive | Adv Search |
STUDY ON STRENGTHENING MECHANISM OF 650 MPa GRADE V-N MICROALLOYED AUTOMOBILE BEAM STEEL
Yajun HUI1(),Hui PAN1,Na ZHOU2,Ruiheng LI2,Wenyuan LI1,Kun LIU1
1 Sheet Metal Research Institute, Shougang Research Institute of Technology, Beijing 100043
2 Technology and Quality Division, Qian'an Iron & Steel Company, Shougang Co., Ltd., Qian'an 064400
Cite this article: 

Yajun HUI,Hui PAN,Na ZHOU,Ruiheng LI,Wenyuan LI,Kun LIU. STUDY ON STRENGTHENING MECHANISM OF 650 MPa GRADE V-N MICROALLOYED AUTOMOBILE BEAM STEEL. Acta Metall Sin, 2015, 51(12): 1481-1488.

Download:  HTML  PDF(1372KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Automobile beam steel with high strength is the development trend of the automotive industry. With the development of heavy-duty vehicles, low cost automobile beam steel both with high strength and high toughness need to be developed. V-N microalloying method combined with thermal mechanical controlled process has a significant grain refinement function. Therefore, the relationship of different N content and technology should be studied in detail. In this work, the microstructure and precipitates of V and V-N microalloyed steel were investigated by using OM, SEM and TEM. And their strengthening mechanism was studied. The results show that both V microalloyed steel and V-N microalloyed steel mainly consist of ferrite and little pearlite. With the increasing of coiling temperature, the strength increased first and then decreased. The optimum mechanical properties were obtained when coiling at 600 ℃, the yield strength, tensile strength and elongation reached 605 MPa, 687 MPa and 24.5%, respectively. Compared with V microalloyed steel, the ferrite in V-N microalloyed steel present finer grain size which can be refined to about 4.5 mm. The precipitates were finer and more dispersed which distribute mainly between 3~50 nm and have the average size of 8.0 nm. And the dislocation density in V-N microalloyed steel is higher. Ferrite grain refinement strengthening, precipitation strengthening and dislocation strengthening make V-N microalloyed steel possess higher yield strength. Ferrite grain refinement strengthening is the predominant mechanism and contributes 43.05% to the yield strength. And the contribution of precipitation strengthening and dislocation strengthening to the yield strength is up to 34.44%.

Key words:  V-N microalloying      automobile beam steel      strengthening mechanism      coiling temperature     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00082     OR     https://www.ams.org.cn/EN/Y2015/V51/I12/1481

Steel C Si Mn P S Al N V Fe
V microalloyed steel V-N microalloyed steel 0.09 0.09 0.18 0.18 1.50 1.50 0.004 0.004 0.005 0.005 0.015 0.015 0.0055 0.0280 0.10 0.10 Bal. Bal.
Table 1  Chemical compositions of V microalloyed steel and V-N microalloyed steel
Fig.1  SEM images of V microalloyed steel with Tc =600 ℃ (a) and V-N microalloyed steel with Tc =570 ℃ (b), 600 ℃ (c) and 660 ℃ (d)
Steel Tf / ℃ Tc / ℃ ss / MPa sb / MPa d / % Yield ratio
V microalloyed steel 870 600 475 546 33.5 0.87
V-N microalloyed steel 870 570 568 649 25.0 0.88
600 605 491 687 24.5 0.88
660 577 31.4 0.86
Table 2  Mechanical properties of V microalloyed steel and V-N microalloyed steel
Fig.2  TEM images of distribution of precipitates in V microalloyed steel (a) and V-N microalloyed steel (b) with Tf=870 ℃ and Tc= 600 ℃
Fig.3  TEM images of precipitates in V microalloyed steel with Tc=600 ℃ (a) and V-N microalloyed steel with Tc=570 ℃ (b), 600 ℃ (c) and 660 ℃ (d) (Inset in Fig.3c shows the SAED pattern of precipitate marked by arrow)
Fig.4  OM (a) and SEM (b) images of intragranular ferrite (IGF) in V-N microalloyed steel, EDS of precipitate (c) and nucleation schematic of IGF (d)
Steel σ 0 / MPa Δ σ s / MPa Δ σ G / MPa Δ σ D i s / MPa Δ σ O r o w a n / MPa σ s / MPa
V microalloyed steel V-N microalloyed steel 54 54 74 82 188 260 98 141 102 153 458 604
Table 3  Yield strength of V microalloyed steel and V-N microalloyed steel and their components
[1] Bewlay B P, Jackson M R, Lipsitt H A. Metall Mater Trans, 1996; 27A: 3801
[2] Yang D J, Fang Y, Du Q, Zhao Y T. Hot Working Technol, 2013; 42(2): 46
[2] (阳代军, 方 圆, 杜 倩, 赵运堂. 热加工工艺, 2013; 42(2): 46)
[3] Guo J, Shang C J, Yang S W, Guo H, Wang X M, He X L. Mater Des, 2009; 30: 129
[4] Manohar P A, Chandra T, Killmore C R. ISIJ Int, 1996; 36: 1486
[5] Chen J, Chen X W, Tang S, Liu Z Y, Wang G D. Mater Sci Forum, 2013; 749: 243
[6] Cizek P, Wynne B P, Davies C H J, Muddle B C, Hodgson P D. Metall Mater Trans, 2002; 33A: 1331
[7] Sakuma T, Honeycombe R W K. Met Sci, 1984; 18: 449
[8] Dunlop G L, Carlsson C J, Frimodig G. Metall Trans, 1978; 9A: 261
[9] Freeman S, Honeycombe R W K. Met Sci, 1977; 11: 59
[10] Honeycombe R W K, Medalist R F. Metall Trans, 1976; 7A: 915
[11] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[12] Yen H W, Chen P Y, Huang C Y, Yang J R. Acta Mater, 2011; 59: 6264
[13] Balliger N K, Honeycombe R W K. Metall Trans, 1980; 11A: 421
[14] Naylor D J. Iron Making Steel Making, 1990; 17(1): 17
[15] Ishikawa F, Takahashi T. ISIJ Int, 1995; 20: 1128
[16] Yong Q L. The Second Phase in Steels. Beijing: Metallurgical Industry Press, 2006: 175
[16] (雍岐龙.钢铁材料中的第二相.北京: 冶金工业出版社, 2006: 175)
[17] Zajac S, Hutchinson B, Lagneborge B. Scand J Metall, 2009; 48: 39
[18] Fang F, Yong Q L, Yang C F. Acta Metall Sin, 2005; 45: 625
[18] (方 芳, 雍岐龙, 杨才福. 金属学报, 2005; 45: 625)
[19] Medina S F, Gomez M, Rancel L. Scr Mater, 2008; 58: 1110
[20] Foreman A J E, Makin M J. Can J Phys, 1967; 45: 511.
[21] De Aedo A J, Garela C I, Palmiere E J. ASM Handbook. Vol.4, Materials Park, OH: ASM International, 1990: 237
[22] Yong Q L. Microalloyed Steel—Physical and Mechanical Metallurgy. Beijing: China Machine Press, 1989: 57
[22] (雍岐龙. 微合金钢—物理和力学冶金.北京: 机械工业出版社, 1989: 57)
[23] Pickering F B. Physical Metallurgy and the Design of Steels. London: Applied Science Publishing Ltd., 1978: 63
[24] Chen J, Lv M Y, Tang S, Liu Z Y, Wang G D. Mater Sci Eng, 2014; A594: 389
[25] Ashby M F. Strengthening Methods in Crystals. London: Applied Science Publishers Ltd., 1971: 137
[26] Chen J, Chen X W, Tang S, Liu Z Y, Wang G D. Mater Sci Forum, 2013; 749: 243
[27] Brito R M, Kestenbach H J. J Mater Sci, 1981; 16: 1257
[1] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[2] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[3] WANG Hongwei, HE Zhufeng, JIA Nan. Microstructure and Mechanical Properties of a FeMnCoCr High-Entropy Alloy with Heterogeneous Structure[J]. 金属学报, 2021, 57(5): 632-640.
[4] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] WEN Bin, TIAN Yongjun. Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials[J]. 金属学报, 2021, 57(11): 1380-1395.
[6] LUAN Xiaosheng, LIANG Zhiqiang, ZHAO Wenxiang, SHI Guihong, LI Hongwei, LIU Xinli, ZHU Guorong, WANG Xibin. Strengthening Mechanism of 45CrNiMoVA Steel by Pulse Magnetic Treatment[J]. 金属学报, 2021, 57(10): 1272-1280.
[7] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[8] XU Shuai, SUN Xinjun, LIANG Xiaokai, LIU Jun, YONG Qilong. Effect of Hot Rolling Deformation on Microstructure and Mechanical Properties of a High-Ti Wear-Resistant Steel[J]. 金属学报, 2020, 56(12): 1581-1591.
[9] HUI Yajun, LIU Kun, WU Kemin, LI Qiuhan, NIU Tao, WU Qiaoling. Effect of Coiling Temperature on Microstructure and Mechanical Properties of 500 MPa Grade Hot Stamping Axle Housing Steel[J]. 金属学报, 2020, 56(12): 1605-1616.
[10] QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. 金属学报, 2019, 55(12): 1537-1543.
[11] Yajun HUI, Hui PAN, Kun LIU, Wenyuan LI, Yang YU, Bin CHEN, Yang CUI. Strengthening Mechanism of 600 MPa Grade Nb-Ti Microalloyed High Formability Crossbeam Steel[J]. 金属学报, 2017, 53(8): 937-946.
[12] Ke ZHANG,Qilong YONG,Xinjun SUN,Zhaodong LI,Peilin ZHAO. EFFECT OF COILING TEMPERATURE ON MICRO-STRUCTURE AND MECHANICAL PROPERTIES OF Ti-V-Mo COMPLEX MICROALLOYED ULTRA-HIGH STRENGTH STEEL[J]. 金属学报, 2016, 52(5): 529-537.
[13] Kechang HAN,Yiqi LIU,Guoqiang LIN,Chuang DONG,Kaiping TAI,Xin JIANG. STUDY ON ATOMIC-SCALE STRENGTHENING MECHANISM OF TRANSITION-METAL NITRIDE MNx (M=Ti, Zr, Hf) FILMS WITHIN WIDE COMPOSITION RANGES[J]. 金属学报, 2016, 52(12): 1601-1609.
[14] HUANG Xiaoxu. SIZE EFFECTS ON THE STRENGTH OF METALS[J]. 金属学报, 2014, 50(2): 137-140.
[15] LI Hai, MAO Qingzhong, WANG Zhixiu, MIAO Fenfen, FANG Bijun, SONG Renguo, ZHENG Ziqiao. EFFECT OF THE THERMO-MECHANICAL TREATMENT OF PRE-AGEING, COLD-ROLLING AND RE-AGEING ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 6061 Al ALLOY[J]. 金属学报, 2014, 50(10): 1244-1252.
No Suggested Reading articles found!