Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (7): 784-790    DOI: 10.11900/0412.1961.2014.00606
Current Issue | Archive | Adv Search |
EFFECT OF FINAL TEMPERATURE AFTER ULTRA-FAST COOLING ON MICROSTRUCTURAL EVOLUTION AND PRECIPITATION BEHAVIOR OF Nb-V-Ti BEARING LOW ALLOY STEEL
Xiaolin LI,Zhaodong WANG(),Xiangtao DENG,Yujia ZHANG,Chengshuai LEI,Guodong WANG
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

Xiaolin LI,Zhaodong WANG,Xiangtao DENG,Yujia ZHANG,Chengshuai LEI,Guodong WANG. EFFECT OF FINAL TEMPERATURE AFTER ULTRA-FAST COOLING ON MICROSTRUCTURAL EVOLUTION AND PRECIPITATION BEHAVIOR OF Nb-V-Ti BEARING LOW ALLOY STEEL. Acta Metall Sin, 2015, 51(7): 784-790.

Download:  HTML  PDF(8339KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High strength low-alloy (HSLA) steel has been widely used in buildings, bridges, ships and automobiles because of the remarkable high strength and forming property. Conventional HSLA steels are strengthened by a combination of grain refinement, solid-solution strengthening and precipitation hardening, and the contribution of precipitation hardening is considered to be minor, since many of the alloying elements are added to HSLA steels in the past basically for the strengthening of grain refinement. However, in recent research, yield strengths up to 780 MPa have been achieved in Ti and Mo bearing HSLA sheet steels by producing microstructures that consist of a ferritic matrix with nanometer-sized carbides, and the precipitation strengthening has been estimated to be approximately 300 MPa. Nowadays, thermo mechanical controll process (TMCP) is widely used to process HSLA steels, the final temperature of ultra-fast cooling (UFC) plays a decisive role for microstructure evolution and precipitation behavior, and finally determines the mechanical properties of the steels. In this work, the effects of final temperature after UFC on microstructural evolution, precipitation behavior and micro-hardness of Nb-V-Ti bearing low alloy steel were studied by using the thermal mechanical simulator, OM, HRTEM and micro-hardness instrument. The results showed that the microstructure and nucleation sites of micro-alloy carbides changed with final temperature after UFC. The microstructure changed from bainite to pearlite and ferrite and the nucleation sites changed from bainite to ferrite with final cooling temperature increasing. The number density of the precipitates in ferrite matrix was greater than that in bainite. Furthermore, the number density of the nanometer sized carbides got the maximum values at 620 ℃. The aspect ratios of the precipitates were close to 1, which meat that the precipitation morphology close to spherical. The sizes of the carbides were all less than 10 nm and became smaller with the decrease of final cooling temperature. Through the calculation by Orowan mechanism, the contributions of the precipitation strengthening to yield strength could reach 25.6% at the final cooling temperature of 620 ℃.

Key words:  Nb-V-Ti bearing low alloy steel      ultra-fast cooling      hardness      precipitation strengthening     
Fund: Supported by National Natural Science Foundation of China (No.51234002)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00606     OR     https://www.ams.org.cn/EN/Y2015/V51/I7/784

Fig.1  Curves of ultra-fast cooling (UFC) to different temperatures and dynamic continuous cooling transformation (CCT) (F—ferrite, P—pearlite, AF—acicular ferrite, B—bainite, M—martensite, CR—cooling rate)
Fig.2  OM images of experimental steel with final cooling temperature of 540 ℃ (a), 580 ℃ (b), 620 ℃ (c) and 660 ℃ (d) after UFC (AF—acicular ferrite, PF—polygonal ferrite)
Fig.3  Precipitation morphologies of experimental steel with final cooling temperatures of 540 ℃ (a), 580 ℃ (b), 620 ℃ (c) and 660 ℃ (d) after UFC
Fig.4  HRTEM images of nanometer-sized carbides in experimental steel with final cooling temperatures of 540 ℃ (a), 580 ℃ (b), 620 ℃ (c) and 660 ℃ (d) after UFC
Fig.5  Micro-hardness of experimental steel after UFC to different temperatures
Fig.6  Yield strength of matrix and the contribution of precipitation strength to yield strength of the experimental steel after UFC to different temperatures
[1] Guo J, Shang C J, Yang S W, Guo H, Wang X M, He X L. Mater Des, 2009; 30: 129
[2] Ghosh A, Das S, Chatterjee S, Rao R P. Mater Charact, 2006; 56: 59
[3] Shin D H, Park K T, Kim Y S. Scr Mater, 2003; 48: 469
[4] Manohar P A, Chandra T, Killmore C R. ISIJ Int, 1996; 36: 1486
[5] Chen J, Chen X W, Tang S, Liu Z Y, Wang G D. Mater Sci Forum, 2013; 749: 243
[6] Wang W, Shan Y Y, Yang K. Acta Metall Sin, 2007; 43: 578 (王 伟, 单以银, 杨 柯. 金属学报, 2007; 43: 578)
[7] You Y, Wang X M, Shang C J. Acta Metall Sin, 2012; 48: 1290 (由 洋, 王学敏, 尚成嘉. 金属学报, 2012; 48: 1290)
[8] Kestenbach H J, Campos S S, Morales E V. Mater Sci Technol, 2006; 22: 615
[9] Cizek P, Wynne B P, Davies C H J, Muddle B C, Hodgson P D. Metall Mater Trans, 2002; 33A: 1331
[10] Shin D H, Park K T, Kim Y S. Scr Mater, 2003; 48: 469
[11] Park J W, Kim J W, Chung Y H. Scr Mater, 2004; 51: 181
[12] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[13] Lu J X, Wang G D. Iron Steel, 2005; 40(9): 69 (陆匠心, 王国栋. 钢铁, 2005; 40(9): 69)
[14] Chen J, Lü M Y, Tang S, Liu Z Y, Wang G D. Acta Metall Sin, 2014; 50: 524 (陈 俊, 吕梦阳, 唐 帅, 刘振宇, 王国栋. 金属学报, 2014; 50: 524)
[15] Chen J, Tang S, Liu Z Y, Wang G D. Acta Metall Sin, 2012; 48: 441 (陈 俊, 唐 帅, 刘振宇, 王国栋. 金属学报, 2012; 48: 441)
[16] Tang S, Liu Z Y, Wang G D, Misra R D K. Mater Sci Eng, 2013; A580: 257
[17] Duan X G, Cai Q W, Wu H B. Acta Metall Sin, 2011; 47: 251 (段修钢, 蔡庆伍, 武会宾. 金属学报, 2011; 47: 251)
[18] Wang Z Q, Mao X P, Yang Z G, Sun X J, Yong Q L, Li Z D, Weng Y Q. Mater Sci Eng, 2011; A529: 459
[19] Yi H L, Du L X, Wang G D. ISIJ Int, 2006; 46: 754
[20] Hong S G, Kang K B, Park C G. Scr Mater, 2002; 46: 163
[21] Park D B, Huh M Y, Shim J H, Suh J Y, Lee K H, Jung W S. Mater Sci Eng, 2005; A394: 339
[22] Wang X N, Di H S, Du L X. Acta Metall Sin, 2012; 48: 621 (王晓南, 邸洪双, 杜林秀. 金属学报, 2012; 48: 621)
[23] Huang X Y. Microstructure of Materials and Its Electron Microscopy Analysis. Beijing: Metallurgical Industry Press, 2008: 539 (黄孝瑛. 材料微观结构的电子显微分析. 北京: 冶金工业出版社, 2008: 539)
[24] Zhou R S. Physics of Metals. ShangHai: Higher Education Press, 1992: 340 (周如松. 金属物理. 上海: 高等教育出版社, 1992: 340)
[1] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[2] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[4] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[5] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[6] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[7] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[8] XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. 金属学报, 2021, 57(7): 903-912.
[9] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[10] TONG Wenhui, ZHANG Xinyuan, LI Weixuan, LIU Yukun, LI Yan, GUO Xuming. Effect of Laser Process Parameters on the Microstructure and Properties of TiC Reinforced Co-Based Alloy Laser Cladding Layer[J]. 金属学报, 2020, 56(9): 1265-1274.
[11] ZHANG Lin, GUO Xiao, GAO Jianwen, DENG Anyuan, WANG Engang. Effect of Electromagnetic Stirring on Microstructure and Mechanical Properties of TiB2 Particle-Reinforced Steel[J]. 金属学报, 2020, 56(9): 1239-1246.
[12] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[13] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[14] LIU Yanmei, WANG Tiegang, GUO Yuyao, KE Peiling, MENG Deqiang, ZHANG Jifu. Design, Preparation and Properties of Ti-B-N Nanocomposite Coatings[J]. 金属学报, 2020, 56(11): 1521-1529.
[15] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
No Suggested Reading articles found!