Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (11): 1384-1392    DOI: 10.11900/0412.1961.2014.00245
Current Issue | Archive | Adv Search |
EFFECTS OF GRAIN REFINEMENT ON CREEP PROPERTIES OF K417G SUPERALLOY
DU Beining, YANG Jinxia, CUI Chuanyong(), SUN Xiaofeng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

DU Beining, YANG Jinxia, CUI Chuanyong, SUN Xiaofeng. EFFECTS OF GRAIN REFINEMENT ON CREEP PROPERTIES OF K417G SUPERALLOY. Acta Metall Sin, 2014, 50(11): 1384-1392.

Download:  HTML  PDF(10873KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Grain size is one of the most important parameters which affect the mechanical properties of cast polycrystalline superalloys. To study the effect of grain refinement on the creep behaviors of K417G superalloy, the creep behaviors of K417G superalloy with four grain sizes were investigated at 760 ℃/645 MPa, 900 ℃/315 MPa and 950 ℃/235 MPa. The longitudinal section of the fracture surface, crack propagation path, dislocation structure and plastic deformation distribution in the vicinity of the cracks were investigated by using SEM, TEM and EBSD techniques, thus the deformation mechanism and effect of grain refinement on the creep properties of K417G superalloy were determined under different creep conditions. The results showed that the effects of grain refinement on the creep property of the alloy varied with the temperatures and stress. At 760 ℃/645 MPa, grain refinement improved the creep life and reduced the steady-state deformation rate of the alloy. The creep deformation was dominated by intragranular deformation. At 900 ℃/315 MPa, as grain size decreased, the creep life increased firstly and then decreased, while the steady-state deformation rate decreased firstly and then increased. The creep deformation showed a competitive effect of intragranular deformation and grain boundary sliding. At 950 ℃/235 MPa, the creep life decreased and the steady-state deformation rate increased with the decrease of the grain size. Grain boundary sliding was the main deformation mode. At the same time, grain refinement could cause a refinement of the dendrite and carbide of the alloy, which would also affect the creep behavior of the alloy to a small extent. The TEM observation showed that at 760 ℃/645 MPa, the dislocations interacted with g' particles through shearing mechanism and no dislocation network was found in the matrix. While at 900 ℃/315 MPa and 950 ℃/235 MPa, the dislocations crossed the g' particles through Orowan bypass mechanism, dislocation network formed in the matrix, and M23C6 precipitated in the interior of the grains, which had a orientation relationship between the M23C6 precipitates and matrix .

Key words:  superalloy      grain size      creep property     
Received:  02 July 2014     
ZTFLH:  TG113.25  
Fund: Supported by National Natural Science Foundation of China (Nos.51171179, 51128101, 51271171 and 11332010), National Basic Research Program of China (No.2010CB631206) and Program of One Hundred of Talented People of Chinese Academy of Sciences

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00245     OR     https://www.ams.org.cn/EN/Y2014/V50/I11/1384

Specimen Grain size / mm Carbide / μm y' phase / nm
A 2.500 4.4 750
B 1.700 4.4 670
C 0.430 3.7 650
D 0.075 3.3 580
Table 1  Average size of grains, carbides and y' phase of K417G superalloy
Fig.1  Morphologies of grain distributions (a~d), dendrites (e~h), carbides (i~l) and g' phases (m~p) for specimens A (a, e, i, m), B (b, f, j, n), C (c, g, k, o), D (d, h, l, p) of K417G superalloy
Specimen 760 ℃/645 MPa 900 ℃/315 MPa 950 ℃/235 MPa
A 60.7 126.4 90.2
B 79.0 166.2 76.2
C 87.5 113.9 70.0
D 105.4 105.5 54.7
Table 2  Creep lives of specimens A~D under different conditions (h)
Fig.2  Creep curves of specimens A~D under 760 ℃/645 MPa (a), 900 ℃/315 MPa (b) and 950 ℃/235 MPa (c)
Specimen 760 ℃/645 MPa 900 ℃/315 MPa 950 ℃/235 MPa
A 0.00406 0.00660 0.00692
B 0.00376 0.00440 0.00762
C 0.00290 0.00639 0.01222
D 0.00350 0.00746 0.01465
Table 3  Steady-state deformation rate K for K417G alloy with four different grain sizes at different conditions (s-1)
Fig.3  Microstructures of specimen A tested at 760 ℃/645 MPa (a), specimen B tested at 900 ℃/315 MPa (b), specimen C tested at 760 ℃/645 MPa (c), specimen D tested at 900 ℃/315 MPa (d) and 950 ℃/235 MPa (e, f)
Fig.4  All Euler images (a, d, g), grain boundary images (b, e, h) and local misorientation images (c, f, i) of specimen D tested at 760 ℃/645 MPa (a~c), 900 ℃/315 MPa (d~f) and 950 ℃/235 MPa (g~i)
Fig.5  TEM image of precipitates (a), selected area diffraction pattern (b) and dislocation structure (c) of specimen C tested at 950 ℃/235 MPa, TEM images of specimen D tested at 760 ℃/645 MPa (d), 900 ℃/315 MPa (e) and 950 ℃/235 MPa (f)
Fig.6  Schematic diagrams of intragranular deformation (a) and grain boundary sliding (b) (s—applied stress)
[1] Yang Y H, Xie Y J, Wang M S, Ye W. Mater Des, 2013; 51: 141
[2] Xu Y, Guo S R. Acta Metall Sin, 1999; 35: 1249
(徐 岩, 郭守仁. 金属学报, 1999; 35: 1249)
[3] Zheng L. J Aeronaut Mater, 2006; 26(3): 7
(郑 亮. 航空材料学报, 2006; 26(3): 7)
[4] Andersson J. Int J Fatigue, 2005; 27: 847
[5] Ho H, Risbet M, Feaugas X, Moulin G. Scr Mater, 2011; 65: 998
[6] Kobayashi K, Yamaguchi K, Hayakawa M, Kimura M. Mater Lett, 2005; 59: 383
[7] Torster F, Baumeister G, Albrecht J, Lütjering G, Helm D, Daeubler M A. Mater Sci Eng, 1997; A234: 189
[8] Wei C N, Bor H Y, Ma C Y, Lee T S. Macromol Chem Phys, 2003; 80: 89
[9] Xiong Y H, Liu W, Yang A M, Zhang R, Liu L. Acta Metall Sin, 1999; 35: 689
(熊玉华, 柳 伟, 杨爱民, 张 蓉, 刘 林. 金属学报, 1999; 35: 689)
[10] Yang A M. PhD Dissertation, Northwestern Polytechnical University, Xi'an, 2002
(杨爱民. 西北工业大学博士学位论文, 西安, 2002)
[11] Soula A, Renollet Y, Boivin D, Pouchou J L, Locq D, Caron P. Mater Sci Eng, 2009; A510: 301
[12] Yuan Y, Gu Y F, Cui C Y, Osada T, Tetsui T, Yokokawa T. Mater Sci Eng, 2011; A528: 5106
[13] Thibault K, Locq D, Caron P, Boivin D, Renollet Y, Bréchet Y. Mater Sci Eng, 2013; A588: 14
[14] Shingledecker J P, Evans N D, Pharr G M. Mater Sci Eng, 2013; A578: 277
[15] Morrison D J, Moosbrugger J C. Int J Fatigue, 1997; 19: 51
[16] Qiao Y, Chakravarthula S S. Int J Fatigue, 2005; 27: 1251
[17] Larson J M, Floreen S. Metall Trans, 1977; 8A: 51
[18] Quested P N, Osgerby S. Mater Sci Technol, 1986; 2: 461
[19] Kuhn F, Zeismann F, Brueckner-Foit A. Int J Fatigue, 2014; 65: 86
[20] Miao J, Pollock T M, Wayne Jones J. Acta Mater, 2009; 57: 5964
[21] Miao J, Pollock T M, Wayne Jones J. Acta Mater, 2012; 60: 2840
[22] Brewer L N, Field D P, Merriman C C. Electron Backscatter Diffraction in Materials Science. New York: Springer, 2009: 18
[23] Wang D, Zhang J, Lou L H. Mater Charact, 2009; 60: 1517
[24] Liu L R, Jin T, Zhao N R, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2003; A361: 191
[25] Guo Y, Wang B H, Hou S F. Acta Metall Sin (Eng Lett), 2013; 26: 307
[26] Zhang J X, Murakumo T, Harada H, Koizumi Y. Scr Mater, 2003; 48: 287
[27] Nategh S, Sajjadi S A. Mater Sci Eng, 2003; A339: 103
[28] Zhu Y, Li Z, Huang M. Comput Mater Sci, 2013; 70: 178
[29] Tian S G, Zhou H H, Zhang J H,Yang H C, Xu Y B, Hu Z Q. Mater Sci Eng, 2000; A279: 160
[30] Hantcherli M, Pettinari-Sturmel F, Viguier B, Douin J, Coujou A. Scr Mater, 2012; 66: 143
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[7] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[8] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[10] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[11] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[12] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[13] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[14] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[15] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
No Suggested Reading articles found!