Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (11): 1377-1383    DOI: 10.11900/0412.1961.2014.00233
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF WELDING JOINT OF A NEW CORROSION RESISTANT Ni-BASED ALLOY
ZHAO Xia1,2, LIU Yang3, ZHA Xiangdong2, CHENG Leming3, MA Yingche2(), LIU Kui2
1 School of Materials and Metallurgy, Northeastern University, Shenyang 110819
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3 ENN Science & Technology Development Co. Ltd., Langfang 065001
Cite this article: 

ZHAO Xia, LIU Yang, ZHA Xiangdong, CHENG Leming, MA Yingche, LIU Kui. MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF WELDING JOINT OF A NEW CORROSION RESISTANT Ni-BASED ALLOY. Acta Metall Sin, 2014, 50(11): 1377-1383.

Download:  HTML  PDF(6713KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Industrial wastewater shows the characteristics of high concentration, complex composition and difficulty to degrade. Supercritical water oxidation (SCWO) gains extensive attention and application in wastewater treatment. This method of wastewater treatment is carried out in the high temperature, high pressure, strong corrosion and oxidation conditions. Thus, the corrosion resistance of the materials used in the treatment equipment should possess excellent performance. Especially for the preheater or reactor piping material, the problem is more outstanding. In this work, a new corrosion resistant Ni-based alloy used in supercritical water oxidation environment was investigated. The microstructure and fracture morphologies of the welding joint were observed and analyzed by OM, SEM and EDS, and the microhardness, tensile strength and other mechanical properties were tested as well. The results indicate that the welding seam of the alloy welding joint can be categorized into cast structure. The microstructure of fusion zone has no welding defect, and the heat affected zone (HAZ) has no grain coarsening phenomenon. The grain size of the alloy is 65 mm. The Vickers hardness of the alloy welding seam are less than the matrix. However, as the number of isometric crystals increases, the Vickers hardness of welding remelting zone becomes large. Because of including W, Mo, Al ,Ti in the alloy, X-2# alloy welding joint has good high-temperature strength and thermal stability. Due to the tensile strength of welding joints in the new alloys is lower than the parent materials, the welding seam is the weakest link. The tensile tests at room temperature and high temperature show tenacity fractures, and the fracture mechanism is mixed with normal fault and shear fault.

Key words:  Ni-based corrosion resistant alloy      welding seam zone      fusion zone      heat affected zone     
Received:  25 July 2014     
ZTFLH:  TG142.1  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00233     OR     https://www.ams.org.cn/EN/Y2014/V50/I11/1377

Fig.1  Position of welding joint for microhardness test
Fig.2  Geometry of tensile specimen (unit: mm)
Fig.3  OM images of welding joints of X-2# alloy

(a) base material

(b) welding seam

(c) welding remelting seam

(d) fusion zone

(e) heat affected zone (HAZ)

Fig.4  Distribution of microhardness of welding joints of X-2# alloy

(a) positive welding seam

(b) negative welding seam

(c) welding remelting zone

(d) central of welding seam

Fig.5  Morphologies of welding joints of X-2# alloy after tensile test under 20 ℃ (a), 300 ℃ (b), 400 ℃ (c), 500 ℃ (d), 600 ℃ (e) and 700 ℃ (f)
Temperature / ℃ Rm1 / MPa Rm2 / MPa η / %
20 715 685 95.9
300 637 586 92.0
400 615 572 93.0
500 597 555 93.1
600 560 528 94.3
700 557 491 88.1
Table 1  Tensile test results of welding joints of X-2# alloy under different temperatures
Fig.6  Fracture morphologies of welding joints of X-2# alloy after tensile test under 20 ℃ (a), 300 ℃ (b), 400 ℃ (c), 500 ℃ (d), 600 ℃ (e) and 700 ℃ (f)
Fig.7  Morphology of inclusion of dimple fracture
[1] Ding Z H. Organic Wastewater Treatment Technology and Its Application. Beijing: Chemical Industry Press, 2002: 1
(丁忠浩. 有机废水处理技术及应用. 北京: 化学工业出版社, 2002: 1)
[2] Ma C Y, Zhao X C, Zhu F L, Guo K Q, Wu R X. Modern Chem Ind, 2007; 27: 497
(马承愚, 赵晓春, 朱飞龙, 郭凯琴, 吴荣霞. 现代化工, 2007; 27: 497)
[3] Zhang P, Wang J C, Zhang X D, Liu X W, Xia Y J, Li Z Y. Environ Prot Sci, 2003; 29(5): 15
(张 平, 王景昌, 张晓冬, 刘学武, 夏远景, 李志义. 环境保护科学, 2003; 29(5): 15)
[4] Zhu F W, Zhang L F, Qiao P P, Liu R Q, Bao Y C, Chen Y Q. Nucl Power Eng, 2009; 30(5): 62
(朱发文, 张乐福, 乔培鹏, 刘瑞芹, 鲍一晨, 陈宇清. 核动力工程, 2009; 30(5): 62)
[5] Kritzer P. J Supercrit Fluids, 2004; 29: 1
[6] Was G S, Ampornrat P, Gupta G, Teysseyrea S, Westa E A, Allenb T R, Sridharanb K, Tanb L, Chenb Y, Renb X, Pister C. J Nucl Mater, 2007; 371(1-3): 176
[7] Yin K J, Qiu S Y, Tang R, Zhang Q, Zhang L F. J Supercrit Fluids, 2009; 50: 235
[8] Tan L, Ren X, Allen T R. Corros Sci, 2010; 52: 1520
[9] Ampornrat P, Was G S. J Nucl Mater, 2007; 371(1-3): 1
[10] Chen Y, Sridharan K, Allen T R. Corros Sci, 2006; 48: 2843
[11] Tan L Z, Yang Y, Allen T R. Corros Sci, 2006; 48: 4234
[12] Tan L Z, Yang Y, Allen T R. Corros Sci, 2006; 48: 3123
[13] Wright L G, Dooley R B. Int Mater Rev, 2010; 55: 129
[14] Sun C W, Hui R. Corros Sci, 2009; 51: 2508
[15] Chen Y, Sridharan K, Ukai S, Allen T R. J Nucl Mater, 2007; 371: 118
[16] Cho H S, Kimura A. J Nucl Mater, 2007; 367-370: 1180
[17] Isselin J, Kasada R, Kimura A. Corros Sci, 2010; 52: 3266
[18] Siwy A D, Clark T E, Motta A T. J Nucl Mater, 2009; 392: 280
[19] Zhu F W, Zhang L F, Tang R, Qiao P P, Liu R Q. At Energy Sci Technol, 2009; 43(6): 39
(朱发文, 张乐福, 唐 睿, 乔培鹏, 刘瑞芹. 原子能科学技术, 2009; 43(6): 39)
[20] Was G S, Teysseyre S, Jiao Z. Corrosion, 2006; 62: 989
[21] Sun M C, Wu X Q, Han E H, Rao J C. Scr Mater, 2009; 61: 996
[22] Halvarsson M, Tang J E, Asteman H, Svensson J E, Johansson L G. Corros Sci, 2006; 48: 2014
[23] Tan L, Ren X, Sridharan K, Allen T R. Corros Sci, 2008; 50: 3056
[24] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309
[25] Zhang Q, Tang R, Yin K J, Luo X, Zhang L F. Corros Sci, 2009; 51: 2092
[26] Bao Y C. Master Thesis, Shanghai Jiao Tong University, 2011
(鲍一晨. 上海交通大学硕士学位论文, 2011)
[27] Dupont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-base Alloys. Hoboken: John Wiley & Sons Inc, 2009: 47
[28] Sima A P. Master Thesis, Shanghai Jiao Tong University, 2009
(司马爱平. 上海交通大学硕士学位论文, 2009)
[29] Zheng C Q,Zhou L,Zhang K S. Study on Mechanical and Its Application to Mesoscopic Metal Ductile Damage. Beijing: National Defence Industry Press, 1995: 27
(郑长卿,周 利,张克实. 金属韧性破坏的细观力学及其应用研究. 北京: 国防工业出版社, 1995: 27)
[30] Zhao B H,He L,Yao Y M. Welding Processing Technology and Quality Testing, Failure Analysis and Metallograph Practical Handbook. Beijing: Metallurgical Industry Press, 2006: 1203
(赵炳辉,何 伦,姚一鸣. 焊接件加工处理工艺与质量检测、失效分析技术及金相图谱实用手册. 北京: 冶金工业出版社, 2006: 1203)
[1] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[2] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[3] Jing GUO, Jinguo LI, Jide LIU, Ju HUANG, Xiangbin MENG, Xiaofeng SUN. Formation Mechanism of Fusion Zone in Growth of Single Crystal Superalloy with Low-Segregated Heterogeneous Seed[J]. 金属学报, 2018, 54(3): 419-427.
[4] Teng GUO, Hongtao LI, Bailing JIANG, Yibin XING, Xinyu ZHANG. Evolution of Substrate "Heat Affected Zone" in Ion Plating and Its Effect on Coatings[J]. 金属学报, 2018, 54(3): 463-469.
[5] Xueda LI,Chengjia SHANG,Changchai HAN,Yuran FAN,Jianbo SUN. INFLUENCE OF NECKLACE-TYPE M-A CONSTITU-ENT ON IMPACT TOUGHNESS AND FRACTUREMECHANISM IN THE HEAT AFFECTED ZONE OF X100 PIPELINE STEEL[J]. 金属学报, 2016, 52(9): 1025-1035.
[6] Xuelin WANG,Liming DONG,Weiwei YANG,Yu ZHANG,Xuemin WANG,Chengjia SHANG. EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL[J]. 金属学报, 2016, 52(6): 649-660.
[7] Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. 金属学报, 2015, 51(9): 1101-1110.
[8] ZHAO Xia, ZHA Xiangdong, LIU Yang, ZHANG Long, LIANG Tian, MA Yingche, CHENG Leming. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A NEW CORROSION-RESISTING NICKEL-BASED ALLOY AND 625 ALLOY DISSIMILAR METAL WELDING JOINT[J]. 金属学报, 2015, 51(2): 249-256.
[9] ZHOU Feng, ZHAO Xia, ZHA Xiangdong, MA Yingche, LIU Kui. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF THE WELDING JOINT OF A NEW CORROSION- RESISTING NICKEL-BASED ALLOY AND 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2014, 50(11): 1335-1342.
[10] YANG Chenggong, SHAN Jiguo, REN Jialie. STUDY ON SHAPE RECOVERY TEMPERATURE OF TiNi ALLOY LASER WELD JOINT[J]. 金属学报, 2012, 48(5): 513-518.
[11] LAN Liangyun QIU Chunlin ZHAO Dewen LI Canming GAO Xiuhua DU Linxiu. MICROSTRUCTURAL CHARACTERS AND TOUGHNESS OF DIFFERENT SUB–REGIONS IN THE WELDING HEAT AFFECTED ZONE OF LOW CARBON BAINITIC STEEL[J]. 金属学报, 2011, 47(8): 1046-1054.
[12] SHU Wei WANG Xuemin LI Shurui HE Xinlai. INFLUENCE OF SECOND–PHASE PARTICLES CONTAINING Ti ON MICROSTRUCTURE AND PROPERTIES OF WELD–HEAT–AFFECTED–ZONE OF A MICROALLOY STEEL[J]. 金属学报, 2010, 46(8): 997-1003.
[13] ZHOU Chengshuang ZHENG Shuqi CHEN Changfeng. STRESS ORIENTED HYDROGEN INDUCED CRACKING BEHAVIOR OF HEAT AFFECTED ZONE OF L360MCS STEEL IN WET H2S ENVIRONMENT[J]. 金属学报, 2010, 46(5): 547-553.
[14] TAN WeiTAN Way; XU Binshi; HAN Wenzheng; FENG Shaowu; FENG Jianlin; ZHONG Qunpeng. HAZ Corrosion of 22SiMn2TiB Ultra-Strength Steel Weldment in 3.5%NaCl Solution[J]. 金属学报, 2004, 40(2): 197-201 .
[15] ZHU Yuru; GUO Shuqiang; XU Jianlun; JIANG Guochang (Shanghai Enhanced Laboratory of Ferrometallurgy; Shanghai University; Shanghai 200072); YU Diwei;PAN Liying; WANG Yueqiang (Institule of Iron & Steel; Baoshan Iron & Steel Corporatton; Shanghai 201900)(Manuscript received 1995-10-20; in revised form 1996-02-08). FORMATION OF INTRAGRANULAR FERRITE PLATES AND THEIR EFFECT ON HEAT AFFECTED ZONE OF STEEL X-60[J]. 金属学报, 1996, 32(8): 891-89.
No Suggested Reading articles found!