Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (11): 1393-1402    DOI: 10.11900/0412.1961.2014.00200
Current Issue | Archive | Adv Search |
NUMERICAL STUDY ON FREE-CUTTING PHASE PRECIPITATION BEHAVIOR IN Fe-Bi-Mn TERNARY ALLOY MULTIPHASE TRANSFORMATION- DIFFUSION SYSTEM
WANG Zhe1, WANG Fazhan1,2(), HE Yinhua1, WANG Xin1, MA Shan2, WANG Huimian3
1 College of Materials and Mineral Resources, Xi′an University of Architecture and Technology, Xi′an 710055
2 School of Mechanical and Electrical Engineering, Xi′an University of Architecture and Technology, Xi′an 710055
3 Technology Center, Shanxi Taigang Stainless Steel Co. Ltd., Taiyuan 030003
Cite this article: 

WANG Zhe, WANG Fazhan, HE Yinhua, WANG Xin, MA Shan, WANG Huimian. NUMERICAL STUDY ON FREE-CUTTING PHASE PRECIPITATION BEHAVIOR IN Fe-Bi-Mn TERNARY ALLOY MULTIPHASE TRANSFORMATION- DIFFUSION SYSTEM. Acta Metall Sin, 2014, 50(11): 1393-1402.

Download:  HTML  PDF(4182KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The solidification process of alloys are not just liquid to solid phase transformation, in fact in some alloys liquid to gas and gas to liquid phase transformation processes happen. A method incorporating the full diffusion-governed phase transformation kinetics into a multiphase volume average solidification model is presented. The motivation to develop such a model is to predict the multiple effect of inclusions precipitation behavior in castings. A key feature of this model, different from most previous ones which usually assume an infinite solute mixing in liquid lead to erroneous estimation of the multiphase diffusion path, is that diffusions in solid, liquid and gas phases are considered. Here solidification of Fe-Bi-Mn ternary alloy is examined. As MnS and Bi have large differences in the solute partition coefficient, diffusion coefficient and liquidus slope, the multiphase diffusion path shows differently from those predicted by infinite liquid mixing models. In this work, a three-dimensional mathematical model for a three-phase flow during its horizontai solidification was studied based on diffusion-governed phase transformation kinetics. Effects of Fe-Bi-Mn ternary alloy solidification on solid-liquid-gas phase transformation were considered. The free-cutting phase precipitation behavior was studied and multiphase transformation and multiphase diffusion path of free-cutting phase precipitation behavior were analyzed. Results show that the multiphase transformation-diffusion is strongly influenced by free-cutting phases precipitation behavior: MnS has a relatively large partition coefficient and small diffusion coefficient with larger Mls,MnS (solid-liquid mass transfer rate of MnS). During solidification, C*s,MnS (solid interface concentration of MnS) may become even larger than Cl,MnS (liquid concentration of MnS), MnS in liquid is assumed to be fully ‘trapped’ in solid and there is no longer any enrichment of MnS; however Bi has a relatively small partition coefficient and large diffusion coefficient with smaller Mls,Bi (solid-liquid mass transfer rate of Bi) and negative Mgl,Bi (liquid-gas mass transfer rate of Bi), during solidification, Cl,Bi (liquid concentration of Bi) always greater than C*s,Bi (solid interface concentration of Bi). In addition, due to the existence of Bi-gas phase, Bi continuous to flow, enriched in the solidified around MnS. Calculated results show good agreement with experimental data.

Key words:  Fe-Bi-Mn ternary alloy      solidification      multiphase transformation      multiphase diffusion path      numerical study     
Received:  25 July 2014     
ZTFLH:  TG111.4  
  TG146  
Fund: National Science and Technology Pillar Program During the Twelfth Five-Year Plan Period (No.2011BAE31B02) and Preparation and Processing of Non-ferrous Materials of High Performance for Innovative Research of Xi′an University of Architecture and Technology of China

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00200     OR     https://www.ams.org.cn/EN/Y2014/V50/I11/1393

Name Equation Number
Conservative equation
Solid-liquid mass conservative ? ? t ( f s ρ s ) = M l s (1)
? ? t ( f l ρ l ) + ? ? ( f l ρ l u l ) = M s l (2)
Liquid-gas mass conservative ? ? t ( f l ρ l ) + ? ? ( f l ρ l u l ) = M g l (3)
? ? t ( f g ρ g ) + ? ? ( f g ρ g u g ) = M l g (4)
Solid-liquid momentum conservative ? ? t ( f l ρ l u l ) + ? ? ( f l ρ l u l ? u l ) = - f l ? p + ? ? τ l + f l ρ l g - U l s M - U l s D τ l = u l ( ? ? ( f l μ l ) + ( ? ? ( f l μ l ) ) T )
(5)
Liquid-gas momentum conservative ? ? t ( f g ρ g u g ) + ? ? ( f g ρ g u g ? u g ) = - f g ? p + ? ? τ g + f g ρ g g - U g l M - U g l D τ g = u g ( ? ? ( f g μ g ) + ( ? ? ( f g μ g ) ) T )
(6)
Solid-liquid species conservative ? ? t ( f s ρ s c s ) = C l s M (7)
? ? t ( f l ρ l c l ) + ? ? ( f l ρ l u l c l ) = C s l M (8)
Liquid-gas species conservative ? ? t ( f l ρ l c l ) + ? ? ( f l ρ l u l c l ) = C g l M (9)
? ? t ( f g ρ g c g ) + ? ? ( f g ρ g u g c g ) = C l g M (10)
Solid enthalpy conservative ? ? t ( f s ρ s h s ) = ? ? ( f s k s ? T s ) + Q s M + Q l s D h s = T r e f T s c p s d T + h s r e f
(11)
Liquid enthalpy conservative ? ? t ( f l ρ l h l ) + ? ? ( f l ρ l u l h l ) = ? ? ( f l k l ? T l ) + Q l M - Q l s D h l = T r e f T l c p l d T + h l r e f
(12)
Gas enthalpy conservative ? ? t ( f g ρ g h g ) + ? ? ( f g ρ g u g h g ) = ? ? ( f g k g ? T g ) + Q g M - Q g l D h g = T r e f T g c p g d T + h g r e f (13)
Transfer rate equation
Solid-liquid mass transfer rate M l s = v R l ? S l s ? ρ s (14)
Liquid-gas mass transfer rate M g l = v R g ? S g l ? ρ l (15)
Solid-liquid interface diffusion-phase transformation rate ν R l = d f s d t ? 1 S l s (16)
Liquid-gas interface diffusion-phase transformation rate ν R g = d f l d t ? 1 S g l (17)
Table 1  Conservative equations and transfer rate equations[10,14,16]
Fig.1  Schematic of solidification process of the Fe-Bi-Mn ternary alloy (l, m, s represent liquid zone, solid zone, mushy zone, respectively)
Fig.2  Schematic of multiphase transformation-diffusion system (The interfacial transfer of different species are indicated by Z1~Z12)
Parameter Fe MnS Bi
Atomic fraction / % 55.8 87.0 209.0
Melting point / K 1808 1630 544
Density / (kg·m-3) 7850 3990 9780
Specific heat / (J·kg-1·K-1) 460 303 130
Viscosity / (kg·m-1·s-1) 0.0059 0.0073 0.0021
Heat conductivity / (W·m-1·K-1) 80.4 34.0 7.9
Latent heat / (J·kg-1) 246400 148390 11300
Liquidus slope / K -55.0 -4.8 -2.7
Partition coefficient 0.36 0.84 0.25
Solid diffusion coefficient / (m2·s-1) 1.0×10-9 1.2×10-13 2.2×10-9
Liquid diffusion coefficient / (m2·s-1) 2.0×10-8 4.0×10-9 1.6×10-8
Gas diffusion coefficient / (m2·s-1) - - 5.7×10-7
Thermal expansion coefficient / K-1 1.43×10-4 1.07×10-4 2.83×10-4
Solutal expansion coefficient / (%-1) 1.1×10-2 0.2×10-2 1.9×10-2
Initial temperature / K 1873 1873 1873
External temperature / K 298 298 298
Table 2  Physical parameters used in simulation
Fig.3  Schematic of 3D model with boundary and initial conditions
Fig.4  3D distributions of Bi and MnS isosurfaces of solidified Fe-0.3%Bi-0.9%Mn ternary alloy
Fig.5  Section zone IV shown in Fig.4 at 900 s of alloy solidification
Fig.6  Isolines in section zone I shown in Fig.4 at 900 s of alloy solidification
Fig.7  Section zone IV shown in Fig.4 at 1500 s of alloy solidification

(a) isolines of liquid fraction and nephograms of mass fraction of MnS

(b) isolines of liquid fraction and nephograms of mass fraction of Bi

Fig.8  (Cl,MnS, Cl,Bi) , (C*l,MnS, C*l,Bi) and (C*s,MnS, C*s,Bi) multiphase diffusion paths of path I
Fig.9  Curves of solid, liquid and gas-phase solute concentration and their interfacial concentration with volume fraction of solid caused by multiphase diffusion

(a) mass fraction of Bi (b) mass fraction of MnS

Fig.10  Experimental (a, c) and simulated (b, d) microstructures in transversal (a, b) and vertical (c, d) directions of Fe-0.3%Bi-0.9%Mn free-cuting stainless steel ingot
Fig.11  Experimental (a) and simulated (b) COVd (coefficient-of-variance of the mean near-neighbor distance) of Bi and MnS on ingot section
  
[1] Krishtal M A, Borgardt A A, Yashin Y D. Met Sci Heat Treat, 1977; 19: 178
[2] Lou D, Cui K, Jia Y. J Mater Eng Perform, 1997; 6: 215
[3] Akasawa T, Sakurai H, Nakamura M, Tanaka T, Takano K. J Mater Process Technol, 2003; 143: 66
[4] Iwamoto T, Murakami T. Jfe Tech Rep, 2004; 4: 64
[5] Wu D, Li Z. J Iron Steel Res Int, 2010; 17: 59
[6] Li Y, Suzuki T, Tang N, Koizumi Y, Chiba A. Mater Sci Eng, 2013; A583: 161
[7] Bhattacharya D. Metall Mater Trans, 1981; 12A: 973
[8] Yaguchi H. Mater Sci Tech-Lond, 1989; 5: 255
[9] Xu J L, Song B, Chen J K, Han Q Y, Jiang G C. Acta Metall Sin, 1993; 29: 65
(徐建伦, 宋 波, 陈继开, 韩其勇, 蒋国昌. 金属学报, 1993; 29: 65)
[10] Wang Z, Wang F Z, Wang X, He Y H, Ma S, Wu Z. Acta Phys Sin, 2014; 63: 076101
(王 哲, 王发展, 王 欣, 何银花, 马 姗, 吴 振. 物理学报, 2014; 63: 076101)
[11] Li J, Wu M, Hao J, Ludwig A. Comp Mater Sci, 2012; 55: 407
[12] Ueshima Y, Sawada Y, Mizoguchi S, Kajioka H. Metall Mater Trans, 1989; 20A: 1375
[13] Yamamoto K, Shibata H, Mizoguchi S. ISIJ Int, 2006; 46: 82
[14] Schneider M C, Beckermann C. Int J Heat Mass Transfer, 1995; 38: 3455
[15] Dupont J N. Metall Mater Trans, 2006; 37A: 1937
[16] Wang T M, Li T J, Cao Z Q, Jin J Z, Grimmig T, Bührig-Polaczek A, Wu M, Ludwig A. Acta Metall Sin, 2006; 42: 591
(王同敏, 李廷举, 曹志强, 金俊泽, Grimmig T, Bührig-Polaczek A, Wu M, Ludwig A. 金属学报, 2006; 42: 591)
[17] Beckermann C, Viskanta R. Appl Mech Rev, 1993; 46: 1
[18] Ludwig A, Wu M. Metall Mater Trans, 2002; 33A: 3673
[19] Ahmad N, Rappaz J, Desbiolles J L, Jalanti T, Rappaz M, Combeau H. Metall Mater Trans, 1998; 29A: 617
[20] Wu M, Ludwig A, Bührig-Polaczek A, Fehlbier M, Sahm P R. Int J Heat Mass Transfer, 2003; 46: 2819
[21] Xu D, Bai Y, Fu H, Guo J. Int J Heat Mass Transfer, 2005; 48: 2219
[22] Wu M, Könözsy L, Ludwig A, Schutzenhofer W, Tanzer R. Steel Res Int, 2008; 79: 637
[23] Založnik M, Combeau H. Int J Therm Sci, 2010; 49: 1500
[24] Zhao G W, Li X Z, Xu D M, Fu H Z, Du Y, He Y H. Acta Metall Sin, 2011; 47: 1135
(赵光伟, 李新中, 徐达鸣, 傅恒志, 杜 勇, 贺跃辉. 金属学报, 2011; 47: 1135)
[25] Peng D J, Lin X, Zhang Y P, Guo X, Wang M, Huang W D. Acta Metall Sin, 2013; 49: 365
(彭东剑, 林 鑫, 张云鹏, 郭 雄, 王 猛, 黄卫东. 金属学报, 2013; 49: 365)
[26] Kurz W, Fisher D J. Fundamentals of Solidification. Switzerland: Trans Tech Publication, 1998: 280
[27] Galenko P K, Danilov D A. J Cryst Growth, 1999; 197: 992
[28] Guttmann M. Metall Mater Trans, 1977; 8A: 1383
[29] Temmel C, Ingesten N G, Karlsson B. Metall Mater Trans, 2006; 37A: 2995
[30] Kang Y B. Calphad, 2010; 34: 232
[31] Rangel R H, Bian X. Numer Heat Transfer, 1995; 28A: 589
[32] Rangel R H, Bian X. Int J Heat Mass Transfer, 1996; 39: 1591
[33] Bian X, Rangel R H. Int J Heat Mass Transfer, 1998; 41: 244
[34] American Society for Metals. ASM Metals Handbook. Michigan: ASM International, 1987: 83
[35] Brandes E A, Brook G B. Smithell's Light Metals Handbook. Massachusetts: Elsevier Science and Technology, 1998: 36
[36] Ayyar A, Chawla N. Compos Sci Technol, 2006; 66: 1980
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[4] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[5] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[8] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[9] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[10] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[11] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[12] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[13] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[14] CAO Jianghai, HOU Zibing, GUO Zhongao, GUO Dongwei, TANG Ping. Effect of Superheat on Integral Morphology Characteristics of Solidification Structure and Permeability in Bearing Steel Billet[J]. 金属学报, 2021, 57(5): 586-594.
[15] ZHANG Zhuang, LI Haiyang, ZHOU Lei, LIU Huasong, TANG Haiyan, ZHANG Jiaquan. As-Cast Spot Segregation of Gear Steel and Its Evolution in the Rolled Products[J]. 金属学报, 2021, 57(10): 1281-1290.
No Suggested Reading articles found!