|
|
EFFECT OF Mn ON HOT CRACKING TENDENCY OF Mg-6.5Zn ALLOYS |
LI Haoyu, BAI Yuanyuan, ZHANG Haitao, WU Xin, ZHANG Zhiqiang, LE Qichi( ) |
The Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 |
|
Cite this article:
LI Haoyu, BAI Yuanyuan, ZHANG Haitao, WU Xin, ZHANG Zhiqiang, LE Qichi. EFFECT OF Mn ON HOT CRACKING TENDENCY OF Mg-6.5Zn ALLOYS. Acta Metall Sin, 2014, 50(10): 1237-1243.
|
Abstract Mg-Zn-Mn alloy has high hot cracking tendency (HCT), but few researches focus on its hot cracking behavior and mechanism. The effect of Mn on the HCT of Mg-6.5Zn-xMn alloys was studied by the designed equipment which can measure and record the subtle changes of temperature, shrinkage displacement and shrinkage stress during solidification in this study. The results indicate that the larger the maximum contract rate (vmax) and the stress accumulating coefficient (k), which are put forward to evaluate HCT, the higher the HCT is, and there is higher HTC when vmax or k presents at high fraction of solid. The vmax of Mg-6.5Zn-xMn alloy increases with the increase of Mn content, however its position move towards to lower fraction of solid, and the k reaches the maximum value and presents at high fraction of solid at 0.35%Mn, which means the greatest HCT in this composition. The hot cracks of these alloys initiated and propagated at final stage of solidification (with higher fraction of solid), and the intergranular feeding channels could be observed. The thicker the liquid film around grains formed by the low melting point phases and the finer the grains, the less the HCT of the alloy is. After dendritic separation, interdendritic bridging formed by the jointing of dendrite arms could enhance the adhesive force between grains at final stage of solidification. However, the break of interdendritic bridging due to the hindrance to grain contraction would result in the hot cracks.
|
Received: 02 April 2014
|
|
Fund: Supported by National Basic Research Program of China (No.2013CB632203) |
[1] |
Luo A, Renaud J, Nakatsugawa J, Plourde J. JOM, 1995; 47(7): 28
|
[2] |
Luo Z P, Zhang S Q. Acta Metall Sin, 1993; 29: A176
|
|
(罗治平, 张少卿. 金属学报, 1993; 29: A176)
|
[3] |
Li J H, Jie W Q, Yang G Y. Rear Met Mater Eng, 2008; 37: 1587
|
|
(李杰华, 介万奇, 杨光昱. 稀有金属材料与工程, 2008; 37: 1587)
|
[4] |
Lee J Y, Lim H K, Kim D H, Kim W T, Kim D H. Mater Sci Eng, ,2007; A449-451: 987
|
[5] |
Wang Y D, Wu G H, Liu W C, Pang S, Zhang Y, Ding W J. Trans Nonferrous Met Soc China, 2013; 23: 3611
|
[6] |
Li X, Liu J W, Luo C P. Acta Metall Sin, 2006; 42: 733
|
|
(李 萧, 刘江文, 罗承萍. 金属学报, 2006; 42: 733)
|
[7] |
Li A W, Liu J W, Wu C L, Luo C P, Jiao D L, Zhu H M. Chin J Nonferrous Met, 2010; 20: 1487
|
|
(李爱文, 刘江文, 伍翠兰, 罗承萍, 焦东玲, 朱红梅. 中国有色金属学报, 2010; 20: 1487)
|
[8] |
Zhu H M, Luo C P, Liu J W, Jiao D L. Trans Nonferrous Met Soc China, 2014; 24: 316
|
[9] |
Chen X Q, Liu J W, Luo C P. Mater Rev, 2008; 22(5): 58
|
|
(陈晓强, 刘江文, 罗承萍. 材料导报, 2008; 22(5): 58)
|
[10] |
Rosalbino F, Negri S D, Scavino G. J Biomed Mater Res, 2013; 101A: 704
|
[11] |
Yuan J W, Zhang K, Zhang X H, Li X G, Li T, Li Y J, Ma M L, Shi G L. J Alloys Compd, 2013; 578: 32
|
[12] |
Zhang E L, Yin D S, Xu L P, Yang L, Yang K. Mater Sci Eng, 2009; C29: 987
|
[13] |
Zhang D F, Qi F G, Shi G L, Dai Q W. Rare Met Mater Eng, 2010; 12: 2205
|
|
(张丁非, 齐福刚, 石国梁, 戴庆伟. 稀有金属材料与工程, 2010; 12: 2205)
|
[14] |
Bai Q L, Li H X, Zhuang L Z, Zhang J S. Foundry, 2013; 62: 25
|
|
(白清领, 李宏祥, 庄林忠, 张济山. 铸造, 2013; 62: 25)
|
[15] |
Borland J C. Welding Met Fabr, 1979; 3: 99
|
[16] |
Li Q C. Mechanism of Casting Formation. Beijing: China Machine Press, 1982: 252
|
|
(李庆春. 铸件形成理论基础. 北京: 机械工业出版社, 1982: 252)
|
[17] |
Clyne T W, Davies G J. Brit Found, 1981; 74: 65
|
[18] |
Ding H, Fu H Z, Liu Z Y. Acta Metall Sin, 1997; 33: 921
|
|
(丁 浩, 傅恒志, 刘忠元. 金属学报, 1997; 33: 921)
|
[19] |
Suyitno S T, Kool W, Katgerman L. Metall Mater Trans, 2009; 40A: 2388
|
[20] |
Rappaz M, Drezet J M, Gremaud M. Metall Mater Trans, 1999; 30A: 449
|
[21] |
Novikov I I, Novik F S. Doklady Akademii Nauk SSSR, 1963; 7: 1153
|
[22] |
Novikov I I, Grushko O E. Mater Sci Technol, 1995; 11: 926
|
[23] |
Cao G, Kou S. Mater Sci Eng, 2006; A417: 230
|
[24] |
Ding H, Fu H Z. Rear Met Mater Eng, 2000; 9: 228
|
|
(丁 浩, 傅恒志. 稀有金属材料与工程, 2000; 9: 228)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|