Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (10): 1231-1236    DOI: 10.11900/0412.1961.2014.00219
Current Issue | Archive | Adv Search |
EFFECT OF ULTRASONIC TREATMENT ON THE ELECTRICAL RESISTANCE OF LIQUID Pb-20%Sn ALLOY
ZHANG Jianfeng1,2, LIU Shuang1, LIU Xuan2, WAN Jianjun2, XU Qingliang3, LE Qichi2(), CUI Jianzhong2
1 College of Science, Northeastern University, Shenyang 110819
2 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819
3 Petrochina Daqing Petrochemical Company Acrylic Fiber Plant, Daqing 163714
Cite this article: 

ZHANG Jianfeng, LIU Shuang, LIU Xuan, WAN Jianjun, XU Qingliang, LE Qichi, CUI Jianzhong. EFFECT OF ULTRASONIC TREATMENT ON THE ELECTRICAL RESISTANCE OF LIQUID Pb-20%Sn ALLOY. Acta Metall Sin, 2014, 50(10): 1231-1236.

Download:  HTML  PDF(1274KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The changes of Pb-20%Sn alloy melt's electrical resistance under different temperatures (300, 400 and 450 ℃), different ultrasonic powers (400, 600 and 800 W) and different treatment times (3, 5, 7 and 10 min) were investigated. The results show that the ultrasonic treatment has a strong influence on the melt’s electrical resistance. When the ultrasonic treatment is applied, the electrical resistance decreases immediately; after the ultrasonic treatment is removed, the electrical resistance increases instantly, but it does not reach its initial value. There is a difference between this electrical resistance and the initial value. This electrical resistance will remain constant for a long time, and then slowly increases to the initial value. The stronger the ultrasonic power is, the more significant influence the ultrasonic treatment will exert, the larger the transient variation of resistance (ΔR) and persistent variation of resistance (Δr) will be, and the longer the effective time will be. With the temperature increased, both ΔR and Δr will increase, and the effective time will increase at first and then decrease.With the extension of ultrasonic treating time, the ultrasonic effect will increase gradually, but there is a saturation treating time.

Key words:  liquid Pb-20%Sn alloy      ultrasonic treatment      electrical resistance     
Received:  29 April 2014     
ZTFLH:  TG113.12  
Fund: Supported by National Basic Research Program of China (No.2013CB632203), National Natural Science Foundation of China (No.50974037) and National Key Technology R&D Program of China (No.2012BAF09B01)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00219     OR     https://www.ams.org.cn/EN/Y2014/V50/I10/1231

Fig.1  Schematic of experimental equipment (1—ultrasonic amplitude transformer; 2—thermocouple; 3—electrodes;4—melt container; 5—resistance furnace; 6—resistance meter;7—thermometer; 8—data acquisition equipment)
Fig.2  Effect of ultrasonic treatments on the resistance of Pb-20%Sn alloy (treating temperature: 400 ℃, ultrasonic power: 800 W, treating time: 3 min, ΔR—transient variation of resistance, Δr—persistent variation of resistance, Δt1—ultrasonic treating time, Δt2—steady state process time, Δt3—slow recover time, Δt—effective time)
Fig.3  Effects of ultrasonic power on ΔR (a) and Δr (b) at different temperatures (Δt1 =5 min)
Fig.4  Effects of ultrasonic treating time on ΔR (a) and Δr (b) at 450 ℃
Fig.5  Effect of ultrasonic treatment parameters on Δt

(a) Δt vs treating temperature

(b) Δt vs treating time

Fig.6  Effect of ultrasonic treatment parameters on Δt2

(a) Δt2 vs treating temperature

(b) Δt2 vs treating time

[1] Abramov O V. Ultrasonic in Liquid and Solid Metals. Florida: Chemical Rubber Company Press, 1994: 290
[2] Bai X Q, Li D H, Zhang L, He J C. Acta Metall Sin, 2002; 38: 483
(白晓清, 李东辉, 张林, 赫冀成. 金属学报, 2002; 38: 483)
[3] Eskin G I, Yu P, Makarov G S. Mater Sci Forum, 1997; 242: 65
[4] Qie X W, Li J, Ma X D, Zhang Z T, Li T J. Acta Metall Sin, 2008; 44: 414
(郄喜望, 李 婕, 马晓东, 张忠涛, 李廷举. 金属学报, 2008; 44: 414)
[5] Eskin G I. Ultrason Sonochem, 2001; 8: 319
[6] Liu Q M, Zhai Q J, Qi F P, Zhang Y. Mater Lett, 2007; 61: 2422
[7] Aghayani M K, Niroumand B. J Alloys Compd, 2011; 509: 114
[8] Qin J Y, Gu T K, Tian X L, Bian X F. Acta Metall Sin, 2004; 40: 689
(秦敬玉, 谷廷坤, 田学雷, 边秀房. 金属学报, 2004; 40: 689)
[9] Greenfield A J, Wellendorf J, Wiser N. Phys Rev, 1971; 4A: 1607
[10] Wang Y, Lu K, Li C. Phys Rev Lett, 1997; 79: 3664
[11] Jakse N, Pasturel A. Phys Rev Lett, 2007; 99: 205702
[12] Greaves G N, Wilding M C, Fearn S, Langstaff D, Kargl F, Cox S, Van Q V, Majérus O, Benmore C J, Weber R, Martin C M, Hennet L. Science, 2008; 322: 566
[13] Fan Z J, Geng X W, Kong W J, Jin Y R. Acta Phys Sin, 2009; 58: 7119
(樊振军, 耿学文, 孔文婕, 金贻荣, 物理学报, 2009; 58: 7119)
[14] Wang Q, Li Y X. Mater Rev, 2001; 15(8): 7
(王 强, 李言祥. 材料导报, 2001; 15(8): 7)
[15] Sun M H, Geng H R, Bian X F, Liu Y. Acta Metall Sin, 2000; 36: 1134
(孙民华, 耿浩然, 边秀房, 刘 燕. 金属学报, 2000; 36: 1134)
[16] Ziman J M. Philos Mag, 1961; 6: 1013
[17] Faber T E, Ziman J M. Philos Mag, 1965; 11: 153
[18] Takeuchi S, Endo H. Trans JIM, 1962; 3: 30
[19] Zu F Q, Zhu Z G, Guo L J, Qin X B, Yang H, Shan W J. Phys Rev Lett, 2002; 89: 125505
[20] Ivanov I M, Berezutski V V. J Alloys Compd, 2004; 375: 58
[21] Anderson P W. Phys Rev, 1958; 109: 1492
[22] Li Z Z. Solid State Physics. Beijing: Higher Education Press, 2003: 505
(李正中. 固体理论. 北京: 高等教育出版社, 2003: 505)
[23] Yan S S.Fundamentals of Solid State Physics. Beijing: Peking University Press, 2000: 194
(阎守胜. 固体理论基础. 北京: 北京大学出版社, 2000: 194)
[24] Gao X P, Li X T, Qie X W, Wu Y P, Li X M, Li T J. Acta Metall Sin, 2007; 43: 17
(高学鹏, 李新涛, 郄喜望, 吴亚萍, 李喜孟, 李廷举. 金属学报, 2007; 43: 17)
[1] LI Hongying ZHAO Yankuo TANG Yi WANG Xiaofeng. DETERMINATION AND APPLICATION OF CCT DIAGRAM FOR 6082 ALUMINUM ALLOY[J]. 金属学报, 2010, 46(10): 1237-1243.
No Suggested Reading articles found!