Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (11): 1305-1310    DOI: 10.11900/0412.1961.2014.00118
Current Issue | Archive | Adv Search |
PRECIPITATION CHARACTERIZATION OF NiAl AND Cu-RICH PHASES IN DUAL-PHASE REGION OF PRECIPITATION STRENGTHENING STEEL
WANG Xiaojiao, SHEN Qin, YAN Jujie, QIU Tao, WANG Bo, LI Hui, LIU Wenqing()
Laboratory for Microstructures, Shanghai University, Shanghai 200444
Cite this article: 

WANG Xiaojiao, SHEN Qin, YAN Jujie, QIU Tao, WANG Bo, LI Hui, LIU Wenqing. PRECIPITATION CHARACTERIZATION OF NiAl AND Cu-RICH PHASES IN DUAL-PHASE REGION OF PRECIPITATION STRENGTHENING STEEL. Acta Metall Sin, 2014, 50(11): 1305-1310.

Download:  HTML  PDF(3820KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Precipitation strengthening plays an important role on improving the mechanical properties of steels, NiAl and Cu-rich phases are two kinds of common precipitates. This work aims to reveal the precipitation characteristics of these two phases in martensite and retained austenite in precipitation strengthening steel by atom probe tomography (APT). The hot rolled samples were aged at 500 ℃ for 1 h after solution treatment at 900 ℃ for 2 h, followed by microstructure analysis. The results show that NiAl and Cu-rich phases form in martensite phase as well as at martensite/austenite phase boundaries, while no precipitate develops in retained austenite. Precipitation was not observed near the phase boundaries in martensite. Equivalent radius, spacing and concentration of the strengthening phases at phase boundary are larger than that inside martensite. In addition, NiAl phase tend to separate from Cu-rich phase, and the separated tendency becomes stronger at phase boundaries than in martensite. Besides, the growth of NiAl and Cu-rich phases at phase boundary differs from that within martensite, which should be induced by the defect density difference between them.

Key words:  retained austenite      martensite      phase boundary      strengthening phase      atom probe tomography     
Received:  20 August 2014     
ZTFLH:  TG142.1  
Fund: Joint Funds of the National Natural Science Foundation of China (No.U1460103)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00118     OR     https://www.ams.org.cn/EN/Y2014/V50/I11/1305

Composition Ni Al Cu Mn C V Cr Mo Si Fe
Mass fraction / % 3.13 1.09 0.95 1.87 0.15 0.18 0.13 0.32 0.24 Bal.
Atomic fraction / % 2.93 2.22 0.82 1.87 0.69 0.19 0.14 0.18 0.47 Bal.
Table 1  Chemical compositions of the precipitation-hardening steel
Fig.1  Three-dimensional APT maps of alloying elements C (a), Mn (b), Ni (c), Al (d) and Cu (e) after aging at 500 ℃ for 1 h (M—martensite, RA—retained austenite, PFZ—precipitate free zone)
Fig.2  One-dimensional concentrations along the arrows marked in Fig.1a (a) and Fig.1b (b)
Fig.3  Two types of precipitates obtained by using iso-surface methods (The green regions containing Cu isosurface at 5% (atomic fraction); the red regions containing Ni+Al isosurface at 20% with analyzed volume of 52 nm×52 nm×165 nm) (a) and enlarged figures of precipitates ppt1 (b), ppt2 (c), ppt3 (d) and ppt4 (e) (Each with an analyzed volume of 10 nm×10 nm×10 nm)
Precipitate NiAl-rich phase Cu-rich phase
Cu
Ni Al Mn
ppt1 44.3±6.4 30.8±6.4 12.9±4.6 41.5±5.4
ppt2 41.7±14.2 36.4±14.5 16.7±10.8 38.9±8.2
ppt3 34.0±6.9 27.0±5.6 5.4±3.0 21.3±5.2
ppt4 33.3±10.3 25.6±7.0 17.2±6.4 25.5±6.4
Table 2  Average concentrations of main alloying elements in NiAl-rich phases and Cu-rich phases
Fig.4  One-dimensional concentrations along the arrows marked in Figs.3b~e
[1] Monzen R, Iguchi M, Jenkins M L. Philos Mag Lett, 2000; 80: 137
[2] Lee T H, Kim Y O, Kim S J. Philos Mag, 2007; 87: 209
[3] Othen P J, Jenkins M L, Smith G D W, Phythian W J. Philos Mag Lett, 1991; 64: 383
[4] Othen P J, Jenkins M L, Smith G D W. Philos Mag, 1994; 70A: 1
[5] Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C. Acta Metall Sin, 2011; 47: 905
(徐 刚, 楚大锋, 蔡琳玲, 周邦新, 王 伟, 彭剑超. 金属学报, 2011; 47: 905)
[6] Isheim D, Kolli R P, Fine M E, Seidman D N. Scr Mater, 2006; 55: 35
[7] Miller M K, Russell K F. J Nucl Mater, 2007; 371: 145
[8] Sen I, Amankwah E, Kumar N S, Fleury E, Oh-ishi K, Hono K, Ramamurty U. Mater Sci Eng, 2011; A528: 4491
[9] Chi C Y, Dong J X, Liu W Q, Xie X S. Acta Metall Sin, 2010; 46: 1141
(迟成宇, 董建新, 刘文庆, 谢锡善. 金属学报, 2010; 46: 1141)
[10] Isheim D, Vaynman S, Fine M E, Seidman D N. Scr Mater, 2008; 59: 1235
[11] Burnett H C, Duff R H, Vacher H C. J Res Natl Bur Stand, 1962; 66C: 113
[12] Irvine K J. J Iron Steel Inst, 1962; 200: 820
[13] Guo Z, Sha W, Vaumousse D. Acta Mater, 2003; 51: 101
[14] Ping D H, Ohnuma M, Hirakawa Y, Kadoya Y, Hono K. Mater Sci Eng, 2005; A394: 285
[15] Zhang Z W, Liu C T, Miller M K, Wang X L, Wen Y, Takeshi F, Akihiko H, Chen M W, Chen G, Bryan A C. Sci Rep, 2013; 3: 1
[16] Vaynman S, Isheim D, Kolli R P, Bhat S P, Seidman D N, Fine M E. Metall Mater Trans, 2008; 39A: 363
[17] Xiang H L, Fan J C, Liu D, Guo P P. Acta Metall Sin, 2012; 48: 1081
(向红亮, 范金春, 刘 东, 郭培培. 金属学报, 2012; 48: 1081)
[18] Miller M K. Atom Probe Tomography: Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers, 2000: 11, 160
[19] Dmitrieva O, Ponge D, Inden G, Millán J, Choi P, Sietsma J, Raabe D. Acta Mater, 2011; 59: 364
[20] Kolli R P, Mao Z G, Seidman D N, Keane D T. Appl Phys Lett, 2007; 91: 241903
[21] Wang X J, Zhou C B, Zhang W R, Liu W Q. Shanghai Met, 2012; 34(4): 20
(王晓姣, 周昌兵, 张伟荣, 刘文庆. 上海金属, 2012; 34(4): 20)
[22] Bacon D J, Harry T. Acta Mater, 2002; 50: 195
[23] Miracle D B. Acta Metall Mater, 1993; 41: 649
[24] Kolli R P, Seidman D N. Acta Mater, 2008; 56: 2073
[25] Thompson S W, Krauss G. Metall Mater Trans, 1996; 27A: 1573
[26] Thompson S W, Krauss G, Tseng C C. J Mater Sci Lett, 1998; 17: 2075
[27] Ricks R A, Howell P R, Honeycombe W K. Met Sci, 1980; 14: 562
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[3] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[4] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[7] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[8] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[9] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[10] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[11] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[12] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[13] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[14] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
[15] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
No Suggested Reading articles found!