Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1109-1114    DOI: 10.11900/0412.1961.2014.00059
Current Issue | Archive | Adv Search |
RESEARCH OF THE MAGNETOCALORIC PROPER- TIES IN Mn1.2Fe0.8P0.74Ge0.26-xSex COMPOUNDS
WANG Shaobo1, LIU Danmin1(), XIAO Weiqiang1, ZHANG Zhenlu1, YUE Ming2, ZHANG Jiuxing2
1 Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124
2 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
Cite this article: 

WANG Shaobo, LIU Danmin, XIAO Weiqiang, ZHANG Zhenlu, YUE Ming, ZHANG Jiuxing. RESEARCH OF THE MAGNETOCALORIC PROPER- TIES IN Mn1.2Fe0.8P0.74Ge0.26-xSex COMPOUNDS. Acta Metall Sin, 2014, 50(9): 1109-1114.

Download:  HTML  PDF(899KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnetic refrigeration based on the magnetocaloric effect offers a potential energy saving, atmosphere friendly way to replace vapor-compression refrigeration. In this work, Mn1.2Fe0.8P0.74Ge0.26-xSex (x=0, 0.005, 0.01, 0.015, 0.02, 0.03) compounds were prepared by mechanical milling and subsequent spark plasma sintering (SPS) technique, their crystal structures, phase transition process and magnetocaloric properties were investigated by XRD, DSC, VSM and direct measurement equipment of magnetocaloric effect. The results show that the Mn1.2Fe0.8P0.74Ge0.26-xSex compounds possess a hexagonal Fe2P-type crystal structure. With increasing Se concentration, the lattice parameters a and c change significantly. It causes c/a ratio decreases firstly, keeps unchanging and followed by increasing again. And the Curie temperature (Tc) of the compounds is increased with the decrease of the c/a ratio. Either applied magnetic field or temperature change can induce the magnetic transformation between the paramagnetic phase and ferromagnetic phase. Low substitution of Se for Ge (x≤0.015) in the Mn1.2Fe0.8P0.74Ge0.26-xSex compounds leads to higher Tc, narrower temperature range of the two-phase coexistence (?Tcoex) and larger adiabatic temperature change (?Tad), in addition the thermal hysteresis (?Thys) and entropy change (?SDSC) remain almost unaffected. 0.01 Se substitution leads to 5.6 K increase in Tc, 10.6% decrease in ?Tcoex, and 10% increase in ?Tad. With a further increase in Se content, magnetocaloric properties of compound decrease.

Key words:  MnFePGeSe      magnetocaloric effect      magnetic phase transition     
ZTFLH:  TM271  
Fund: Supported by National Natural Science Foundation of China (Nos.51071007 and 51171003) and Key Research Project of Beijing Municipal Commission of Education (No.KZ201410005005)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00059     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1109

Fig.1  XRD spectra of Mn1.2Fe0.8P0.74Ge0.26-xSex compounds
x a / nm c / nm c/a Tc / K ?Thys / K ?Tcoex / K ?SDSC / (J·kg-1·K-1)
0 0.61088 0.34534 0.56531 280.2 2.7 8.5 24.1
0.005 0.61081 0.34527 0.56526 279.4 2.6 9.7 22.7
0.01 0.61123 0.34512 0.56464 285.8 3.2 7.6 24.4
0.015 0.61121 0.34504 0.56452 285.8 2.8 9.6 22.4
0.02 0.61132 0.34496 0.56429 285.8 3.0 12.1 23.1
0.03 0.61080 0.34503 0.56488 282.8 3.2 11.6 21.7
Table 1  Lattice parameters a and c at 333 K and the magnetocaloric properties of the Mn1.2Fe0.8P0.74Ge0.26-xSex compounds
Fig.2  DSC curves (a) and the temperatures (T) dependence of the entropy changes (∆SDSC) (b) of the Mn1.2Fe0.8P0.74Ge0.26-xSex compounds
Fig.3  Volume fraction of the paramagnetic phase during the paramagnetic (PM) to ferromagnetic (FM) transition for the Mn1.2Fe0.8P0.74Ge0.26-xSex (x=0, 0.01) compounds under the cooling process
Fig.4  Isothermal magnetization curves (increasing magnetic field mode) for Mn1.2Fe0.8P0.74Ge0.26-xSex compounds with x=0 (a) and x=0.01 (b) measured in external magnetic field change of 0~3 T (M—magnetization, H—external magnetic field, ∆T—temperature step)
Fig.5  Temperatures dependence of the magnetic entropy changes (∆SM) of Mn1.2Fe0.8P0.74Ge0.26-xSex (x=0, 0.01) compounds measured in a magnetic field changed from 0 to 1, 2 and 3 T
Fig.6  Temperatures dependence of adiabatic temperature changes (∆Tad) of Mn1.2Fe0.8P0.74Ge0.26-xSex (x=0, 0.01) compounds with a field change of 0~1.5 T
  
[1] Cam Thanh D T, Brück E, Tegus O, Klaasse J C P, Gortenmulder T J, Buschow K H J. J Appl Phys, 2006; 99: 08Q107
[2] Yan A, Müller K H, Schultz L,Gutfleisch O. J Appl Phys, 2006; 99: 08K903
[3] Dagula W, Tegus O, Fuquan B, Zhang L, Si P Z, Zhang M, Zhang W S, Brück E,de Boer F R, Buschow K H J. IEEE Trans Magn, 2005; 41: 2778
[4] Ou Z Q, Wang G F, Lin S, Tegus O, Brück E, Buschow K H J. J Phys: Condens Matter, 2006; 18: 11577
[5] Tegus O, Fuquan B, Dagula W, Zhang L, Brück E, Si P Z,de Boer F R, Buschow K H J. J Alloys Compd, 2005; 396: 6
[6] Yue M, Li Z Q, Wang X L, Liu D M, Zhang J X, Liu X B. J Appl Phys, 2009; 105: 07A915
[7] Pecharsky V K, Gschneidner K A. Phys Rev Lett, 1997; 78: 4494
[8] Hu F X, Shen B G, Sun J R. Appl Phys Lett, 2001; 78: 3675
[9] Chen W, Zhong W. J Funct Mater, 1998; 29: 236
(陈 伟, 钟 伟. 功能材料, 1998; 29: 236)
[10] Tegus O, Bruck E, Buschow K H J,de Boer F R. Nature, 2002; 415: 150
[11] Tegus O, Brück E, Li X W, Zhang L, Dagula W, de Boer F R, Buschow K H J. J Magn Magn Mater, 2004; 272: 2389
[12] Brück E, Kamarad J, Sechovsky V, Arnold Z, Tegus O, de Boer F R. J Magn Magn Mater, 2007; 310: e1008
[13] Trung N T, Qu Z Q, Gortenmulder T J, Tegus O, Buschow K H J, Brück E. Appl Phys Lett, 2009; 94: 102513
[14] Wang G F, Song L, Li F A, Ha S C L, Li X W, Tegus O. Acta Metall Sin, 2008; 43: 889
(王高峰, 松 林, 李福安, 哈斯朝鲁, 李新文, 特古斯. 金属学报, 2008; 43: 889)
[15] Geng Y X, Tegus O. J Magn Mater Dev, 2011; 42(5): 17
(耿遥祥, 特古斯. 磁性材料及器件, 2011; 42(5): 17)
[16] Ha S C L, Ning J, He X L, Yi R L T, Song L, Tegus O, Huang J H. J Magn Mater Dev, 2010; 41(4): 24
(哈斯朝鲁, 宁 君, 何小龙, 伊日勒图, 松 林, 特古斯, 黄焦宏. 磁性材料及器件, 2010; 41(4): 24)
[17] Liu Y J, Geng Y X, Tegus O,Ha S C L, Song Z Q, Hai S, Li S. J Inner Mongolia Normal Univ, 2012; 41: 368
(刘雨江, 耿遥祥, 特古斯, 哈斯朝鲁, 宋志强, 海 山, 利 胜. 内蒙古师范大学学报, 2012; 41: 368)
[18] Wang D M, Song L, Wang Y H, Zhang W, Geng Y X, Tegus O. Rare Met, 2012; 36: 87
(王冬梅, 松 林, 王耀辉, 张 伟, 耿遥祥, 特古斯. 稀有金属, 2012; 36: 87)
[19] Wang D M, Song L, Wang Y H, Zhang W, Bi L G, Tegus O. Acta Metall Sin, 2011; 47: 344
(王冬梅, 松 林, 王耀辉, 张 伟, 毕力格, 特古斯. 金属学报, 2011; 47: 344)
[20] Liu D M, Huang Q Z, Yue M, Lynn J W, Liu L J, Chen Y, Wu Z H, Zhang J X. Phys Rev, 2009; 80B: 174415
[21] Liu D M, Yue M, Zhang J X, McQueen T M, Lynn J W, Wang X L, Chen Y, Li J Y, Cava R J, Liu X B, Altounian Z, Huang Q. Phys Rev, 2009; 79B: 014435
[22] Gercsi Z, Delczeg-Czirjak E K, Vitos L, Wills A S, Daoud-Aladine A, Sandeman K G. Phys Rev, 2013; 88B: 024417
[23] Delczeg-Czirjak E K, Gercsi Z, Bergqvist L, Eriksson O, Szunyogh L, Nordblad P, Johansson B, Vitos L. Phys Rev, 2012; 85B: 224435
[24] Xu H, Yue M, Zhao C, Zhang D T, Zhang J X. Rare Met, 2012; 31: 336
[25] Zhang L, Liu D M, Deng X J, Yue M, Zhang J X. J Funct Mater, 2011; 42: 1951
(张 雷, 刘丹敏, 邓晓军, 岳 明, 张久兴. 功能材料, 2011; 42: 1951)
[26] Yue M, Liu D M, Huang Q Z, Wang T, Hu F X, Li J B, Rao G H, Shen B G, Lynn J W, Zhang J X. J Appl Phys, 2013; 113: 043925
[27] Zhang M, Liu D M, Liu C X, Huang Q Z, Wang S B, Zhang H, Yue M. Acta Metall Sin, 2013; 49: 783
(张 孟, 刘丹敏, 刘翠秀, 黄清镇, 王少博, 张 虎, 岳 明. 金属学报, 2013; 49: 783)
[28] Liu L J. Master Thesis, Beijing University of Technology, 2009
(刘立江. 北京工业大学硕士学位论文, 2009)
[1] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[2] Yaoxiang GENG,Ojied TEGUS,Haibin WANG,Chuang DONG,Yuxin WANG. Effect of Sn Addition on Microstructure and Magnetism of MnFe(P, Si) Alloy[J]. 金属学报, 2017, 53(1): 77-82.
[3] Lijuan MU, Jiaohong HUANG, Cuilan LIU, Juan CHENG, Naikun SUN, Zengqi ZHAO. MAGNETOCALORIC EFFECT OF La0.9Ce0.1Fe11.44Si1.56Hy ALLOY AND POWER BONDED BLOCK[J]. 金属学报, 2015, 51(6): 762-768.
[4] WANG Dongmei SONG Lin WANG Yaohui ZHANG Wei Bilige Tegus O. MAGNETOCALORIC EFFECT IN MnFeP0.63Ge0.12Si0.25Bx (x=0, 0.01, 0.02, 0.03) COMPOUNDS[J]. 金属学报, 2011, 47(3): 344-348.
[5] WANG Yingung;CHEN Changpin;WANG Qidong(Zhejiang University; Hangzhou 310027); TANG Ning;YANG Fuming (State Key Laboratory of Magnetism; Institute of Physics; Chinese Academy of Sciences; Beijing 100080). STRUCTURE AND MAGNETIC PROPERTIES OF QUASI-TERNARY TbMn_(6-x)Co_xSn_6 COMPOUNDS[J]. 金属学报, 1997, 33(5): 543-547.
No Suggested Reading articles found!