Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1449-1458    DOI: 10.11900/0412.1961.2015.00651
  本期目录 | 过刊浏览 |
相场法模拟Fe-C合金中奥氏体-铁素体等温相变过程*
张军1,2,郑成武2(),李殿中2
1) 中国科学技术大学化学与材料科学学院, 合肥 230026
2) 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
MODELING OF ISOTHERMAL AUSTENITE TO FERRITE TRANSFORMATION IN A Fe-CALLOY BY PHASE-FIELD METHOD
Jun ZHANG1,2,Chengwu ZHENG2(),Dianzhong LI2
1 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
引用本文:

张军,郑成武,李殿中. 相场法模拟Fe-C合金中奥氏体-铁素体等温相变过程*[J]. 金属学报, 2016, 52(11): 1449-1458.
Jun ZHANG, Chengwu ZHENG, Dianzhong LI. MODELING OF ISOTHERMAL AUSTENITE TO FERRITE TRANSFORMATION IN A Fe-CALLOY BY PHASE-FIELD METHOD[J]. Acta Metall Sin, 2016, 52(11): 1449-1458.

全文: PDF(1152 KB)   HTML
  
摘要: 

运用相场法研究了Fe-C合金在临界区等温过程中发生的奥氏体-铁素体相变过程. 通过分析铁素体生长过程中C的扩散行为, 发现奥氏体-铁素体相变表现为混合控制生长的特征, 奥氏体/铁素体相界面处于非平衡状态. 进一步研究了不同等温温度(1010, 1048和 1087 K)下奥氏体-铁素体相变的微观组织和C浓度场的演化情况. 结果表明, 随着等温温度的降低, 铁素体形核率增加, 铁素体相变平衡体积分数增加, 但奥氏体内部C浓度分布的不均匀程度加剧, 1010 K等温时的微观组织呈现为不规则细小铁素体晶粒围绕分散分布的残余奥氏体的两相结构. 随着等温温度的降低, 奥氏体-铁素体相变过程表现出由扩散控制生长模式向界面控制生长模式转化的趋势.

关键词 相场法,奥氏体,铁素体,C浓度场,混合控制,相变模式    
Abstract

Austenite-to-ferrite transformation in modern steels is a key metallurgical phenomenon as it can be exploited to produce microstructures that are closely associated with significant improvement of their properties. Both experimental and theoretical studies of this transformation have received much attention. In particular, in recent years, considerable efforts have been directed to the development of numerical models for adequate quantitative descriptions of the nucleation and growth of ferrite grains as well as the overall transformation kinetics. In this work, a modified multi-phase field model has been developed to simulate the isothermal γ-α transformation in a Fe-C alloy. This model takes both the effect of a finite interface mobility and a finite diffusivity into account, which hence enables a clear description of the mixed-mode nature of the transformation. In contrast to the diffusion-controlled phase transformation model, the carbon concentration in front of the moving γ-α interface is found to be non-equilibrium under this circumstance. In order to study the microstructural behavior and kinetics over the entire temperature range of the phase transformation, three different isothermal transformation processes have been imulated. The simulation results indicate that the nucleation density of ferrite increases with decreasing the temperature, which thus leads to a larger volume fraction of ferrite. However, the heterogeneous distribution of carbon in the untransformed austenite is intensified. The final microstructural product of the transformation at low temperature of 1010 K consists of fine residual austenite islands surrounded by fine polygonal ferrite. The simulation results also indicate that the transformation mode from austenite to ferrite varies from essentially diffusion-controlled at high temperature towards interface-controlled at low temperature.

Key wordsphase-field    method,    austenite,    ferrite,    carbon    concentration    field,    mix-mode,    transformation    mode
收稿日期: 2015-12-17     
基金资助:* 国家自然科学基金项目51371169和51401214资助
图1  序参量与C浓度分布示意图
图2  1050 K等温时奥氏体-铁素体相变过程中微观组织和C浓度场的模拟结果
图3  铁素体晶粒沿图2a2中指示方向生长时C的分布情况
图4  C原子扩散迁移率对C分布的影响
图5  奥氏体-铁素体相变驱动力与奥氏体内C原子浓度的关系
图6  不同等温温度下相变过程中微观组织演化的模拟结果
图7  奥氏体-铁素体相变动力学曲线
图8  不同等温温度下相变过程中C浓度场演化的模拟结果
图9  不同等温温度下相界面前沿C浓度分布的情况
图10  S因子与铁素体体积分数的关系
[1] Offerman S E, van Dijk N H, Sietsma J, Lauridsen E M, Margulies L, Grigull S, Poulsen H F, van der Zwaag S.Acta Mater, 2004; 52: 4757
[2] Zener C. J Appl Phys, 1949; 20: 950
[3] Christian J W.The Theory of Transformations in Metals and Alloys. 3rd Ed., Oxford: Elsevier Science, 2002: 1
[4] Sietsma J, van der Zwaag S.Acta Mater, 2004; 52: 4143
[5] Kumar M, Sasikumar R, Nair P K.Acta Mater, 1998; 46: 6291
[6] Zhang L, Zhang C B, Wang Y M, Wang S Q, Ye H Q.Acta Mater, 2003; 51: 5519
[7] Lan Y J, Li D Z, Li Y Y.Acta Mater, 2004; 52: 1721
[8] Tong M M, Li D Z, Li Y Y.Acta Mater, 2005; 53: 1485
[9] Steinbach I, Pezzolla F, Nestler B, See?elberg M, Prieler R, Schmitz G J, Rezende J L L.Physica, 1996; 94D: 135
[10] Chen L Q.Annu Rev Mater Res, 2002; 32: 113
[11] Warren J A, Kobayashi R, Lobovsky A E, Carter W C.Acta Mater, 2003; 51: 6035
[12] Boettger B, Apel M, Eiken J, Schaffnit P, Steinbach I.Steel Res Int, 2008; 79: 608
[13] Gao Y J, Luo Z R, Hu X Y, Huang C G.Acta Metall Sin, 2010; 46: 1161
[13] (高英俊, 罗志荣, 胡项英, 黄创高. 金属学报, 2010; 46: 1161)
[14] Zhao Y, Zhang H Y, Wei H, Zheng Q, Jin T, Sun X F.Acta Metall Sin, 2013; 49: 981
[14] (赵彦, 张宏宇, 韦华, 郑启, 金涛, 孙晓峰. 金属学报, 2013; 49: 981)
[15] Ke C B, Ma X, Zhang X P.Acta Metall Sin, 2010; 46: 84
[15] (柯常波, 马骁, 张新平. 金属学报, 2010; 46: 84)
[16] Zhou G Z, Wang Y X, Chen Z.Acta Metall Sin, 2012; 48: 485
[16] (周广钊, 王永欣, 陈铮. 金属学报, 2012; 48: 485)
[17] Loginova I, ?gren J, Amberg G.Acta Mater, 2004; 52: 4055
[18] Mecozzi M G, Sietsma J, van der Zwaag S, Apel M, Schaffnit P, Steinbach I.Metall Mater Trans, 2005; 36A: 2327
[19] Huang C J, Browne D J, McFadden S.Acta Mater, 2006; 54: 11
[20] Moelans N.Acta Mater, 2011; 59: 1077
[21] Moelans N, Blanpain B, Wollants P.Phys Rev, 2008; 78B: 1098
[22] Eiken J, B?ttger B, Steinbach I.Phys Rev, 2006; 73E: 066122
[23] Gustafson P.Metall Trans, 1987; 18A: 175
[24] Umemoto M, Hiramatsu A, Moriya A, Watanabe T, Nanba S, Nakajima N, Anan G, Higo Y.ISIJ Int, 1992; 32: 306
[25] Zheng C W, Xiao N M, Hao L H, Li D Z, Li Y Y.Acta Mater, 2009; 57: 2956
[26] Du Q, Faber V, Gunzburger M.SIAM Rev, 1999; 41: 637
[27] Chandra R, Dagum L, Kohr D, Maydan D, McDonald J, Menon R. Parallel Programming in Open MP. San Mateo: Morgan Kaufmann Publishers, 2000: 1
[28] Chen H, van der Zwaag S.Acta Mater, 2014; 72: 1
[29] van Leeuwen Y, Sietsma J, van der Zwaag S.ISIJ Int, 2003; 43: 767
[30] van Bohemen S M C, Bos C, Sietsma J.Metall Mater Trans, 2011; 42A: 2609
[1] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[4] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[5] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[6] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[7] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[8] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[9] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[10] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[11] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[12] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[13] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[14] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[15] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.