Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 949-959    DOI: 10.11900/0412.1961.2019.00376
  本期目录 | 过刊浏览 |
Mn23%CrNi型双相不锈钢高温拉伸行为的影响
邓亚辉, 杨银辉(), 蒲超博, 倪珂, 潘晓宇
昆明理工大学材料科学与工程学院 昆明 650093
Effect of Mn Addition on High Temperature Tensile Behavior of 23%Cr Low Nickel Type Duplex Stainless Steel
DENG Yahui, YANG Yinhui(), PU Chaobo, NI Ke, PAN Xiaoyu
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

邓亚辉, 杨银辉, 蒲超博, 倪珂, 潘晓宇. Mn23%CrNi型双相不锈钢高温拉伸行为的影响[J]. 金属学报, 2020, 56(7): 949-959.
Yahui DENG, Yinhui YANG, Chaobo PU, Ke NI, Xiaoyu PAN. Effect of Mn Addition on High Temperature Tensile Behavior of 23%Cr Low Nickel Type Duplex Stainless Steel[J]. Acta Metall Sin, 2020, 56(7): 949-959.

全文: PDF(6645 KB)   HTML
摘要: 

利用热模拟试验机在应变速率为0.01 s-1和变形温度为300~1050 ℃的条件下,对23%Cr不同Mn含量(6.26%~14.13%,质量分数)节Ni型双相不锈钢进行高温拉伸研究。结果表明,高温拉伸变形时的主要承载相为奥氏体相,且Mn含量增加提高了奥氏体相的体积分数,有利于增强热塑性,但对抗拉强度影响较小。在550~1050 ℃变形时,随着Mn含量的增加断面收缩率增加,但在300 ℃变形时,断面收缩率有所下降。Mn含量的增加使得较低温度拉伸(450和750 ℃)的“易裂敏感点”略有增大,不同Mn含量条件下的最佳塑性温度区在500~650 ℃和850~1050 ℃。300 ℃变形时,Mn含量对加工硬化率影响小,1050 ℃变形时高Mn含量有利于在较低应变量下发生动态再结晶。不同Mn含量试样拉伸变形组织主要受奥氏体相位错结构演变影响,Mn含量较高(14.13%)时奥氏体相上形成的大量高密度、小尺寸位错胞可细化晶粒,有利于提高热塑性。

关键词 双相不锈钢节Ni型Mn添加热塑性    
Abstract

There are different crystal structures and stacking fault energies (SFEs) for two phases of duplex stainless steel (DSS), and the Mn substitution for Ni also can change SFE of two phases and cause austenite stability variation during high temperature deformation. Thus, the thermal deformation behavior of DSS with Mn addition become more complex compared with that of single phase steel during high temperature tensile process. In this work, the high temperature tensile behavior of 23%Cr low nickel type DSS with different Mn contents (6.26%~14.13%, mass fraction) has been studied in the temperature of 300~1050 ℃ at strain rate of 0.01 s-1 by using a thermal simulation machine. The results showed that the austenite phases mainly accommodate tensile deformation stress, and the volume fraction of them increased with increasing Mn contents, which is beneficial to enhance the thermoplasticity, and has little effect on the tensile strength. With more Mn addition, the reduction of area increases when deformed in the temperature of 550~1050 ℃, but decreases at lower temperature of 300 ℃. The value of crack sensitive point increased slightly when stretched at lower temperature (450 ℃, 750 ℃) with more Mn addition, and optimum plastic temperature zones are in the range of 500~650 ℃ and 850~1050 ℃. The effect of Mn addition on work hardening rate is slight when deformed at 300 ℃, while high Mn addition is favorable for dynamic recrystallization occurence at lower strain when deformed at higher temperature of 1050 ℃. The tensile deformation microstructure of different Mn addition samples are mainly dependent on the austenite dislocations evolution. As the Mn content attained 14.13%, a large number of dislocation cells with high density and small size formed in austenite phase, which is contributed to grains refinement and improves thermoplasticity.

Key wordsduplex stainless steel    low nickel type    Mn addition    thermoplasticity
收稿日期: 2019-11-08     
ZTFLH:  TG142  
基金资助:国家自然科学基金项目(51461024);国家自然科学基金项目(51861019)
作者简介: 邓亚辉,男,1992年生,硕士生
No.CSiMnSPCrNiMoCuNFe
10.040.226.260.0040.00823.32.151.410.140.26Bal.
20.040.2310.270.0040.00623.32.121.350.140.28Bal.
30.040.2514.130.0030.00623.62.201.290.140.28Bal.
表1  实验用双相不锈钢化学成分 (mass fraction / %)
图1  不同Mn含量双相不锈钢试样在应变速率0.01 s-1下不同温度高温拉伸时的真应力-真应变曲线
图2  不同Mn含量双相不锈钢试样垂直于拉伸方向的固溶态和550 ℃拉伸后近断口处截面显微组织的OM像
图3  不同Mn含量双相不锈钢试样在固溶态和550 ℃高温拉伸的奥氏体体积分数变化
图4  不同Mn含量双相不锈钢试样在不同温度条件下拉伸的加工硬化率-应变曲线
图5  不同Mn含量双相不锈钢试样在不同温度下拉伸时的抗拉强度和断面收缩率
图6  不同Mn含量双相不锈钢试样高温拉伸强度-断面收缩率特性曲线
图7  不同Mn含量双相不锈钢试样在300和550 ℃拉伸后的断口形貌的SEM像
图8  不同Mn含量双相不锈钢试样在550 ℃拉伸后断口夹杂物形貌的SEM像和EDS
图9  不同Mn含量双相不锈钢试样在550 ℃高温拉伸近断口处显微组织的TEM像
[1] Liljas M, Johansson P, Liu H P, et al. Development of a lean duplex stainless steel [J]. Steel Res. Int., 2008, 79: 466
[2] Miranda M A R, Sasaki J M, Tavares S S M, et al. The use of X-ray diffraction, microscopy, and magnetic measurements for analysing microstructural features of a duplex stainless steel [J]. Mater. Charact., 2005, 54: 387
[3] Charles J, Chemelle P, translated by Hu J C, Zhang W. The history of duplex developments, nowadays DSS properties and duplex market future trends [J]. World Iron Steel, 2012, 12(1): 46
[3] Charles J, Chemelle P著, 胡锦程, 张 伟译. 双相不锈钢的发展现状及未来市场趋势 [J]. 世界钢铁, 2012, 12(1): 46)
[4] Sato Y S, Nelson T W, Sterling C J, et al. Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel [J]. Mater. Sci. Eng., 2005, A397: 376
[5] Su Y S, Yang Y H, Cao J C, et al. Research on hot working behavior of low-nickel duplex stainless steel 2101 [J]. Acta Metall. Sin., 2018, 54: 485
[5] (苏煜森, 杨银辉, 曹建春等. 节Ni型2101双相不锈钢的高温热加工行为研究 [J]. 金属学报, 2018, 54: 485)
[6] Mcirdi L, Baptiste D, Inal K, et al. Multi-scale behaviour modelling of an austeno-ferritic steel [J]. J. Neut. Res., 2001, 9: 217
[7] Moverare J J, Odén M. Deformation behaviour of a prestrained duplex stainless steel [J]. Mater. Sci. Eng., 2002, A337: 25
[8] Siegmund T, Werner E, Fischer F D. On the thermomechanical deformation behavior of duplex-type materials [J]. J. Mech. Phys. Solids, 1995, 43: 495
[9] Iza-Mendia A, Piñol-Juez A, Urcola J J, et al. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions [J]. Metall. Mater. Trans., 1998, 29A: 2975
[10] Cabrera J M, Mateo A, Llanes L, et al. Hot deformation of duplex stainless steels [J]. J. Mater. Process. Technol., 2003, 143-144: 321
[11] Zhang P X, Ren X P, Xie J X, et al. Superplasticity mechanism of duplex stainless steels [J]. J. Univ. Sci. Technol. Beijing, 2005, 27: 68
[11] (张沛学, 任学平, 谢建新等. 双相不锈钢超塑性变形机理 [J]. 北京科技大学学报, 2005, 27: 68)
[12] Shu X J, Zhang S Q, Song Z G. Experimental research on hot workability of 00Cr22Ni5Mo3N dual phase stainless steel [J]. Steel Pipe, 2004, 33(6): 15
[12] (舒先进, 张淑琴, 宋志刚. 00Cr22Ni5Mo3N双相不锈钢热加工性能的试验研究 [J]. 钢管, 2004, 33(6): 15)
[13] Tong J, Fu W T, Lin G, et al. Hot deformation behavior of 00Cr25Ni7Mo4N super duplex stainless steel [J]. J. Iron Steel Res., 2007, 19(10): 40
[13] (童 骏, 傅万堂, 林 刚等. 00Cr25Ni7Mo4N超级双相不锈钢的高温变形行为 [J]. 钢铁研究学报, 2007, 19(10): 40)
[14] Farahat A I Z, Hamed O, El-Sisi A, et al. Effect of hot forging and Mn content on austenitic stainless steel containing high carbon [J]. Mater. Sci. Eng., 2011, A530: 98
[15] Liu H B, Liu J H, Wu B W, et al. Effect of Mn and Al contents on hot ductility of high alloy Fe-xMn-C-yAl austenite TWIP steels [J]. Mater. Sci. Eng., 2017, A708: 360
[16] Balancin O, Hoffmann W A M, Jonas J J. Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures [J]. Metall. Mater. Trans., 2000, 31A: 1353
[17] Chen L, Wang L M, Du X J. et al. Hot deformation behavior of 2205 duplex stainless steel [J]. Acta Metall. Sin., 2010, 46: 52
[17] (陈 雷, 王龙妹, 杜晓建等. 2205双相不锈钢的高温变形行为 [J]. 金属学报, 2010, 46: 52)
[18] Liu C S. Measuring the phase content of dual-phases stainless steel accurately [J]. Phys. Test. Chem. Anal., 2003, 39A: 414
[18] (刘持森. 双相不锈钢中相含量的精确测定 [J]. 理化检验, 2003, 39A: 414)
[19] Li J. Study on preparation, structure and properties of new resource-saving high Mn-N duplex stainless steels [D]. Shanghai: Shanghai University, 2011
[19] (李 钧. 新型资源节约型高Mn-N双相不锈钢的制备、结构及性能研究 [D]. 上海: 上海大学, 2011)
[20] Park Y H, Lee Z H. The effect of nitrogen and heat treatment on the microstructure and tensile properties of 25Cr-7Ni-1.5Mo-3W-xN duplex stainless steel castings [J]. Mater. Sci. Eng., 2001, A297: 78
[21] Song Y Q, Guan Z P, Ma P K, et al. Theoretical and experimental standardization of strain hardening index in tensile deformation [J]. Acta Metall. Sin., 2006, 42: 673
[21] (宋玉泉, 管志平, 马品奎等. 拉伸变形应变硬化指数的理论和实验规范 [J]. 金属学报, 2006, 42: 673)
[22] Mittra J, Dubey J S, Kulkarni U D, et al. Role of dislocation density in raising the stage II work-hardening rate of alloy 625 [J]. Mater. Sci. Eng., 2009, A512: 87
[23] Morris D G, Muñoz-Morris M A, Requejo L M. Work hardening in Fe-Al alloys [J]. Mater. Sci. Eng., 2007, A460-461: 163
[24] Barnett M R. Twinning and the ductility of magnesium alloys: Part I: “Tension” twins [J]. Mater. Sci. Eng., 2007, A464: 1
[25] Zhang Y J. Research on deformation induced plastic behavior of the lean duplex stainless steel [D]. Qinhuangdao: Yanshan University, 2017
[25] (张英杰. 节约型双相不锈钢形变诱导塑性行为机理的研究 [D]. 秦皇岛: 燕山大学, 2017)
[26] Lu S, Hu Q M, Johansson B, et al. Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels [J]. Acta Mater., 2011, 59: 5728
[27] Estrin Y, Mecking M. A unified phenomenological description of work hardening and creep based on one-parameter models [J]. Acta Metall., 1984, 32: 57
[28] Chen Z W, Dai Q X, Li D S, et al. Properties of Cr18Ni9Cu3NbN austenitic stainless steel [J]. Heat Treat. Met., 2010, 35(10): 52
[28] (陈祖伟, 戴起勋, 李冬升等. Cr18Ni9Cu3NbN奥氏体不锈钢的性能研究 [J]. 金属热处理, 2010, 35(10): 52)
[29] Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
[30] Ren M, Li B H. The mechanism and preventing method of cracking on the steel ingot [J]. Heavy Cast. Forg., 1992, (3): 36
[30] (任 猛, 李保华. 钢锭开裂的机理及防止方法 [J]. 大型铸锻件, 1992, (3): 36)
[31] Zhong Q P, Zhao Z H. Fractography [M]. Beijing: Higher Education Press, 2006: 200
[31] (钟群鹏, 赵子华. 断口学 [M]. 北京: 高等教育出版社, 2006: 200)
[32] Zhang Z Q, Li X Y, Lou Y C, et al. Advance in research of nitrogen contained stainless steels [J]. Foundry, 2002, 51: 661
[32] (张仲秋, 李新亚, 娄延春等. 含氮不锈钢研究的进展 [J]. 铸造, 2002, 51: 661)
[33] Zhao X, Jing T F, Gao Y W, et al. Morphology of graphite in hot-compressed nodular iron [J]. J. Mater. Sci., 2004, 39: 6093
[34] Dai Q X, Wang A D, Cheng X N, et al. Effect of alloying elements and temperature on strength of cryogenic austenitic steels [J]. Mater. Sci. Eng., 2001, A311: 205
[35] Remy L, Pineau A. Twinning and strain-induced F.C.C. →H.C.P. transformation in the Fe-Mn-Cr-C system [J]. Mater. Sci. Eng., 1997, A28: 99
[36] Byun T S. On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels [J]. Acta Mater., 2003, 51: 3063
[37] Michel D J, Moteff J, Lovell A J. Substructure of type 316 stainless steel deformed in slow tension at temperatures between 21 ℃ and 816 ℃ [J]. Acta Metall., 1973, 21: 1269
[38] Chen C, Wang M P, Wang S. et al. Evolution of dislocation microstructures in Ta-7.5%W alloy foils during cold-rolling [J]. Acta Metall. Sin., 2011, 47: 984
[38] (陈 畅, 汪明朴, 王 珊等. Ta-7.5%W合金箔材冷轧过程中的位错结构演变 [J]. 金属学报, 2011, 47: 984)
[39] Yu Y N. Principles of Metallography [M]. Beijing: Metallurgical Industry Press, 2000: 48
[39] (余永宁. 金属学原理 [M]. 北京: 冶金工业出版社, 2000: 408)
[40] Jiang T H, Liu M P, Xie X F, et al. Grain boundary structure of Al-Mg alloys processed by high pressure torsion [J]. Chin. J. Mater. Res., 2014, 28: 371
[40] (蒋婷慧, 刘满平, 谢学锋等. 高压扭转大塑性变形Al-Mg合金中的晶界结构 [J]. 材料研究学报, 2014, 28: 371)
[41] Hu G D, Wang P, Li D Z, et al. The tensile behaviors of vanadium-containing 25Cr-20Ni austenitic stainless steel at temperature between 200 ℃ and 900 ℃ [J]. Mater. Sci. Eng., 2018: A711: 543
[42] Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiaotong University Press, 2003: 201
[42] (胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第3版,上海: 上海交通大学出版, 2003: 201)
[43] Duprez L, De Cooman B C, Akdut N. Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation [J]. Metall. Mater. Trans., 2002, 33A: 1931
[1] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[2] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[3] 王桂芹,王琴,车宏龙,李亚军,雷明凯. Si对铸造超高铬高碳双相钢组织及性能的影响[J]. 金属学报, 2020, 56(3): 278-290.
[4] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[5] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[6] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[7] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[8] 张海,李时磊,刘刚,王艳丽. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响[J]. 金属学报, 2017, 53(5): 531-538.
[9] 陈雨来,罗照银,李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响[J]. 金属学报, 2015, 51(9): 1085-1091.
[10] 戴付志, 张文征. 双相不锈钢中沉淀相平衡形貌及界面结构的原子尺度计算[J]. 金属学报, 2014, 50(9): 1123-1127.
[11] 陈雨来, 张泰然, 王一德, 李静媛. O, N和Ni含量对0Cr25Ni7Mo4N双相不锈钢热轧塑性的影响*[J]. 金属学报, 2014, 50(8): 905-912.
[12] 向红亮, 郭培培, 刘东. 含Ag抗菌双相不锈钢组织及抗菌性能研究[J]. 金属学报, 2014, 50(10): 1210-1216.
[13] 向红亮 范金春 刘东 郭培培. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 I. 富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088.
[14] 向红亮 范金春 刘东 顾兴. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 II. 耐蚀及抗菌性能[J]. 金属学报, 2012, 48(9): 1089-1096.
[15] 郭丽芳 李旭晏 孙涛 徐菊良 李劲 蒋益明. 敏化温度对SAF2304双相不锈钢耐局部腐蚀性能的影响[J]. 金属学报, 2012, 48(12): 1503-1509.